

About	This	E-Book

EPUB	 is	 an	 open,	 industry-standard	 format	 for	 e-books.	However,	 support	 for
EPUB	and	its	many	features	varies	across	reading	devices	and	applications.	Use
your	device	or	app	settings	to	customize	the	presentation	to	your	liking.	Settings
that	 you	 can	 customize	 often	 include	 font,	 font	 size,	 single	 or	 double	 column,
landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or
app,	visit	the	device	manufacturer’s	Web	site.
Many	titles	include	programming	code	or	configuration	examples.	To	optimize

the	presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape
mode	and	adjust	 the	 font	 size	 to	 the	 smallest	 setting.	 In	 addition	 to	presenting
code	and	configurations	in	the	reflowable	text	format,	we	have	included	images
of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where
the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you
will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.

Microservices	and	Containers

Parminder	Singh	Kocher

Boston	•	Columbus	•	 Indianapolis	 •	New	York	•	San	Francisco	•	Amsterdam	•
Cape	 Town	Dubai	 •	 London	 •	Madrid	 •	Milan	 •	Munich	 •	 Paris	 •	Montreal	 •
Toronto	 •	 Delhi	 •	 Mexico	 City	 São	 Paulo	 •	 Sydney	 •	 Hong	 Kong	 •	 Seoul	 •
Singapore	•	Taipei	•	Tokyo

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	 are	 claimed	 as	 trademarks.	 Where	 those	 designations	 appear	 in	 this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.
The	 author	 and	 publisher	 have	 taken	 care	 in	 the	 preparation	 of	 this	 book,	 but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	 liability	 is	 assumed	 for	 incidental	or	 consequential
damages	 in	 connection	 with	 or	 arising	 out	 of	 the	 use	 of	 the	 information	 or
programs	contained	herein.
For	 information	 about	 buying	 this	 title	 in	 bulk	 quantities,	 or	 for	 special	 sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and
content	particular	to	your	business,	training	goals,	marketing	focus,	or	branding
interests),	 please	 contact	 our	 corporate	 sales	 department	 at
corpsales@pearsoned.com	or	(800)	382-3419.
For	 government	 sales	 inquiries,	 please	 contact
governmentsales@pearsoned.com.
For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.
Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Control	Number:	2017963682
Copyright	©	2018	Pearson	Education,	Inc.
Microsoft	 and/or	 its	 respective	 suppliers	 make	 no	 representations	 about	 the
suitability	of	 the	 information	 contained	 in	 the	 documents	 and	 related	 graphics
published	as	part	of	the	services	for	any	purpose.	All	such	documents	and	related
graphics	are	provided	“as	is”	without	warranty	of	any	kind.	Microsoft	and/or	its
respective	suppliers	hereby	disclaim	all	warranties	and	conditions	with	regard	to
this	 information,	 including	 all	 warranties	 and	 conditions	 of	 merchantability,
whether	express,	 implied	or	 statutory,	 fitness	 for	 a	particular	purpose,	 title	 and
non-infringement.	In	no	event	shall	Microsoft	and/or	its	respective	sup-pliers	be
liable	 for	 any	 special,	 indirect	 or	 consequential	 damages	 or	 any	 damages
whatsoever	 resulting	 from	 loss	 of	 use,	 data	 or	 profits,	whether	 in	 an	 action	 of
contract,	negligence	or	other	tortious	action,	arising	out	of	or	in	connection	with
the	use	or	performance	of	information	available	from	the	services.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw

The	 documents	 and	 related	 graphics	 contained	 herein	 could	 include	 technical
inaccuracies	 or	 typographical	 errors.	 Changes	 are	 periodically	 added	 to	 the
information	 herein.	 Microsoft	 and/or	 its	 respective	 sup-pliers	 may	 make
improvements	and/or	changes	in	the	product(s)	and/or	the	program(s)	described
herein	at	any	time.	Partial	screenshots	may	be	viewed	in	full	within	the	software
version	specified.
Microsoft®	 and	 Windows®	 are	 registered	 trademarks	 of	 the	 Microsoft
Corporation	 in	 the	U.S.A.	and	other	countries.	Screenshots	and	 icons	reprinted
with	permission	from	the	Microsoft	Corporation.	This	book	is	not	sponsored	or
endorsed	by	or	affiliated	with	the	Microsoft	Corporation.
All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is
protected	 by	 copyright,	 and	 permission	 must	 be	 obtained	 from	 the	 publisher
prior	 to	 any	 prohibited	 reproduction,	 storage	 in	 a	 retrieval	 system,	 or
transmission	 in	 any	 form	 or	 by	 any	 means,	 electronic,	 mechanical,
photocopying,	 recording,	 or	 likewise.	 For	 information	 regarding	 permissions,
request	forms	and	the	appropriate	contacts	within	the	Pearson	Education	Global
Rights	 &	 Permissions	 Department,	 please	 visit
www.pearsoned.com/permissions/.

ISBN-13:	978-0-13-459838-3
ISBN-10:	0-13-459838-5
1 18

http://www.pearsoned.com/permissions/

This	book	is	dedicated	to	my	mom	and	dad.	Without	their	love	and
countless	blessings,	it	just	wouldn’t	have	been	possible.

Contents

Preface
Acknowledgments
About	the	Author

Part	I:	Microservices
Chapter	1:	An	Introduction	to	Microservices

What	Are	Microservices?
Modular	Architecture
Other	Advantages	of	Microservices
Disadvantages	of	Microservices

Chapter	2:	Switching	to	Microservices
Fatigues	and	Attributes
Learning	Curve	for	the	Organization
Business	Case	for	Microservices
Cost	Components

Chapter	3:	Interprocess	Communication
Types	of	Interactions
Preparing	to	Write	Web	Services
Microservice	Maintenance
Discovery	Service

API	Gateway
Service	Registry

Putting	It	All	Together

Chapter	4:	Migrating	and	Implementing	Microservices
The	Need	for	Transition
Creating	a	New	Application	with	Microservices

Organization	Readiness

Services-Based	Approach
Interprocess	(Service-to-Service)	Communication
Technology	Selection
Implementation
Deployment
Operations

Migrating	a	Monolithic	Application	to	Microservices
Microservices	Criteria
Rearchitecting	the	Services

A	Hybrid	Approach

Part	II:	Containers
Chapter	5:	Docker	Containers

Virtual	Machines
Containers
Docker	Architecture	and	Components
The	Power	of	Docker:	A	Simple	Example

Chapter	6:	Docker	Installation
Installing	Docker	on	Mac	OS	X
Installing	Docker	on	Windows
Installing	Docker	on	Ubuntu	Linux

Chapter	7:	Docker	Interface
Key	Docker	Commands

Docker	Search
Docker	Pull
Docker	Images
Docker	RMI
Docker	Run
Docker	ps
Docker	Logs
Docker	Restart

Docker	Attach
Docker	Remove
Docker	Inspect
Docker	Exec
Docker	Rename
Docker	Copy
Docker	Pause/Unpause
Docker	Create
Docker	Commit
Docker	Diff

Dockerfile
MySQL	Dockerfile

Docker	Compose

Chapter	8:	Containers	Networking
Key	Linux	Concepts
Linking
Default	Options

None
Host
Bridge

Custom	Networks
Custom	Bridge	Network	Driver
Overlay	Network	Driver
Underlay	Network	Driver	or	Macvlan

Chapter	9:	Container	Orchestration
Kubernetes

Kubectl
Master	Node
Worker	Nodes
Example:	Kubernetes	Cluster

Apache	Mesos	and	Marathon

Mesos	Master
Agents
Frameworks
Example:	Marathon	Framework

Docker	Swarm
Nodes
Services
Task
Example:	Swarm	Cluster

Service	Discovery
Service	Registry

Chapter	10:	Containers	Management
Monitoring
Logging
Metrics	Collection

docker	stats
APIs
cAdvisor

Cluster-wide	Monitoring	Tools
Heapster
Prometheus
Step	1:	Running	Prometheus
Step	2:	Adding	Node	Exporter	and	cAdvisor
Step	3:	Adding	Targets
Step	4:	Bringing	Up	the	User	Interface:	Grafana
Step	5:	Viewing	the	Stats
Step	6:	Integrating	the	Alertmanager

Part	III:	Hands-On	Project—Putting	Learning	into	Practice
Chapter	11:	Case	Study:	Monolithic	Helpdesk	Application

Helpdesk	Application	Overview
Application	Architecture

Authentication,	Interceptor,	and	Authorization
Account	Management
Ticketing
Product	Catalog
Appointments
Message	Board
Search

Building	the	Application
Setting	Up	Eclipse
Building	the	Application
Deploying	and	Configuring

New	Requirements	and	Bug	Fixes

Chapter	12:	Case	Study:	Migration	to	Microservices
Planning	for	Migration

Applying	Microservices	Criteria
Conversion	Summary
Impact	on	Architecture

Converting	to	Microservices
Product	Catalog
Ticketing
Search

Application	Build	and	Deployment
Code	Setup
Building	the	Microservices
Deploying	and	Configuring

New	Requirements	and	Bug	Fixes

Chapter	13:	Case	Study:	Containerizing	a	Helpdesk	Application
Containerizing	Microservices

Listing	Dependencies
Build	Binaries	and	WAR	files
Creating	a	Docker	Image

Building	the	Docker	Image
DC/OS	Cluster	Setup	on	AWS

Deploying	the	Catalog	Microservice
Submitting	a	Task	to	Marathon
Inspecting	and	Scaling	the	Service
Accessing	the	Service

Updating	the	Monolithic	Application
Conclusion

What	Is	DevOps?
Only	the	Beginning

Appendix	A:	Helpdesk	Application	Flow
Administrator	Flows

Login
Administration	and	Supported	Products

Customer	Flows
My	Products
Create	an	Incident
View	Incident
Message	Board
Make	Appointment
Search
My	Profile

Support	Desk	Engineer	Flows
View	All	Tickets
View	Tickets

Appendix	B:	Installing	the	Solr	Search	Engine
Prerequisites
Installation	Steps
Configuring	Solr	for	Simple	Data	Import

Index

Preface

As	always,	the	technology	sector	is	in	the	midst	of	momentous	transitions—the
Internet	 of	 things,	 software-enabled	 networking,	 and	 software	 as	 a	 service
(SaaS),	to	name	but	a	few.	Because	of	these	innovations,	there	is	a	large	demand
for	 platforms	 and	 architectures	 that	 can	 improve	 the	 process	 of	 application
development	 and	 deployment.	 Companies	 of	 many	 sizes	 now	 require
frameworks	 and	 architectures	 that	 can	 simplify	 their	 applications’	 update
processes,	allowing	their	latest	versions	to	go	to	market	more	frequently	without
adding	undue	overhead	to	the	development	and	deployment	teams.
This	transition,	like	many	of	its	cousins,	is	still	young,	yet	many	technologies

and	frameworks	in	the	space	have	already	come	and	gone.	The	winners	remain
standing,	however,	continuing	 to	 improve	 the	world’s	 software	by	 allowing	 its
developers—us—to	create	new	applications	and	update	existing	ones	with	more
agility	than	ever	before.	Two	such	winners?	Microservices	and	containers,	red-
hot	 topics	 that,	 in	 my	 opinion,	 also	 possess	 staying	 power.	 Compared	 to	 the
monolithic	 approach,	 the	 most	 common	 way	 of	 developing	 and	 deploying
applications,	 microservices	 simplify	 those	 processes,	 especially	 with	 large
projects	 that	 require	multiple	 teams	and	 increasingly	 long	code.	 In	 such	cases,
even	 a	 small	 change	 in	 the	 code	 can	 cause	 serious	 delays.	Microservices	 can
handle	 today’s	 large	 codes	 by	 incorporating	 agility	 and	 scalability	 into
application	development	and	deployment,	all	within	a	proven	paradigm.
That’s	 where	 this	 book	 comes	 in.	 When	 I	 first	 started	 learning	 about

microservices,	 there	 were	 several	 valuable	 online	 resources	 (in	 particular,	 I
recommend	 the	 websites	 microservices.io,	 by	 Chris	 Richardson,	 and
martinfowler.com,	 by	 James	 Lewis	 and	 Martin	 Fowler),	 but	 I	 could	 not	 find
many	 books	 that	 systematically	 built	 a	 case	 for	why	 a	 CTO	 or	 director	 of	 an
engineering	 team	 should	 (or	 should	 not)	make	 the	 transition	 to	microservices.
There	was	a	clear	gap	in	the	market;	the	more	I	mastered	the	subject	matter,	the
more	 I	 thought,	 “Why	 can’t	 I	 be	 the	 one	 to	 fill	 that	 gap?”	 Soon	 I	 was
brainstorming	ideas	for	a	book	of	my	own.

Is	This	Book	for	You?
I	wrote	this	book	with	two	audiences	in	mind.	The	first	group	includes	students,
designers,	and	architects	with	experience	 in	 software	and	systems	engineering.

http://martinfowler.com

Although	 you	 might	 be	 familiar	 with	 microservices	 and/or	 containers,	 this	 is
probably	your	 first	book	dedicated	 entirely	 to	 them.	 It	 should	provide	you	not
only	 with	 a	 comprehensive	 overview	 on	 the	 subjects	 but	 also	 with	 enough
information	 and	 analysis	 to	 help	 you	 decide	 when—and	when	 not—to	 utilize
these	 technologies.	 Those	 of	 you	who	 already	 have	 hands-on	 experience	with
microservices	 and/or	 containers	may	want	 to	 skim	 through	 Parts	 I	 and	 II	 and
dive	 straight	 into	Part	 III,	which	 presents	 a	 full-fledged	 service	desk	 example,
written	 by	 following	 the	 standard	 service-oriented	 architectures	 (SOA)
methodologies.	 This	 case	 study	 discusses	 how	 one	 such	 application’s
architecture	 can	 be	 converted	 to	 a	microservices-based	 architecture	 as	well	 as
how	Docker	containers	fit	into	the	picture.	I	think	this	deep	dive	under	the	hood
will	be	a	 real	 treat	 and	ultimately	pique	your	 interest	 enough	 to	delve	 into	 the
world	of	microservices	and	containers	yourself.
My	 other	 target	 readers	 are	 non-programmers	 coming	 at	 the	 topic	 from	 a

business	perspective—executives	or	project	managers	 interested	in	 learning	the
basics.	Perhaps	you	read	an	intriguing	blog	post	about	microservices.	Could	that
be	the	solution	your	team	has	been	searching	for	but	you	couldn’t	seem	to	find	a
good	follow-up	book?	Maybe	you’ve	overheard	the	engineers	discussing	Docker
containers	 and	want	 to	 learn	enough	 to	 fit	 in	 and	 talk	 the	 talk.	Whatever	 your
reasons,	 this	 book—essentially	 a	 primer	 chock	 full	 of	 easy-to-understand
examples	 and	 minimal	 jargon—should	 be	 ideal	 for	 any	 manager	 considering
new	ways	to	update	or	develop	new	applications	more	effectively.
This	book	is	for	anyone	trying	to	accomplish	any	or	all	of	the	following:

•	•	Make	his	or	her	organization	more	effective	in	building	industrial-strength
software.

•	 •	Transition	 into	microservices	 and	Docker	 containers	while	understanding
how	they	differ	from	SOA.

•	•	Learn	microservices	and	Docker	as	part	of	his	or	her	school	curriculum	to
gain	new,	highly	marketable	skills.

In	short,	this	book	is	for	anyone	who	wants	to	learn	more	about	microservices
and	Docker	containers.	I	hope	you	are	one	of	them!	Let’s	get	started.

Register	your	copy	of	Microservices	and	Containers	on	the	InformIT	site
for	 convenient	 access	 to	 updates	 and/or	 corrections	 as	 they	 become
available.	To	start	the	registration	process,	go	to	informit.com/register	and

http://informit.com/register

log	in	or	create	an	account.	Enter	the	product	ISBN	(9780134598383)	and
click	 Submit.	 Look	 on	 the	 Registered	 Products	 tab	 for	 an	Access	 Bonus
Content	 link	 next	 to	 this	 product,	 and	 follow	 that	 link	 to	 access	 any
available	 bonus	 materials.	 If	 you	 would	 like	 to	 be	 notified	 of	 exclusive
offers	on	new	editions	and	updates,	please	check	the	box	to	receive	email
from	us.

Acknowledgments

As	 someone	who	 has	 spent	 his	 entire	 career	 in	 tech,	 I	 never	 thought	 I	 would
write	a	book.	I	was	an	engineer,	not	an	author.	And	so,	before	embarking	on	this
challenge,	I	had	little	 idea	what	went	 into	authoring	a	book—and	how	tough	it
would	be.	Let’s	 just	 say,	 I	 knew	 it	would	 be	 a	 lot	 of	work,	 but	 not	 this	much
work.	Writing	this	book	would	have	been	difficult	enough	if	I	had	been	able	to
devote	 my	 working	 days	 to	 it.	 Writing	 it	 while	 continuing	 to	 work	 full	 time
seemed	downright	impossible	at	times!	And	it	would	have	been,	too,	were	it	not
for	the	many	talented	and	generous	people	who	guided	and	supported	me	every
step	of	the	way.
First,	 to	the	entire	team	at	Pearson,	 thank	you	for	accepting	my	proposal	and

guiding	me	through	the	entire	editorial	process.	In	particular,	I	want	to	thank	my
main	contact	 there,	Christopher	Guzikowski	 for	his	guidance	at	every	step,	 for
his	trust	 that	I	could	do	this,	and	for	his	patience	while	I	worked	on	this	book.
Also	 big	 thanks	 to	 Michael	 Thurston	 for	 his	 indispensable	 editing	 and	 quick
turnaround	time.
This	book	would	not	have	been	possible	without	similar	aid	and	support	from

many	friends,	starting	with	Lenin	Lakshminarayanan	and	Anuj	Singh,	who	spent
countless	 evenings	 and	 weekends	 with	 me	 helping	 with	 all	 the	 code-related
aspects	of	the	case	study,	a	critical	section	of	this	book.	Many	thanks	to	Gerald
Cantor,	who	read	multiple	drafts	and	provided	honest,	invaluable	feedback;	Ravi
Papisetti,	Nawaz	Akther,	Sameer	Nair,	and	Gurvinder	Singh	for	providing	useful
insights	and	suggestions;	and	Michael	Wolman	for	reviewing	every	word	of	this
book.
This	 book	 also	 would	 have	 been	 impossible	 without	 the	 motivation	 and

guidance	 I	 received.	Whenever	 I	 had	 doubts,	 I	would	 seek	 guidance	 from	my
mentors,	 who	 played	 a	 huge	 role	 in	 getting	me	 to	 this	 point	 in	my	 career.	 In
particular,	I	would	like	to	thank	Greg	Carter,	my	mentor	for	the	past	12	years,	for
his	unconditional	support	and	guidance;	Sunil	Kripalani,	for	always	trusting	me
and	 pushing	me	 to	 be	 innovative	 and	 strive	 to	 make	 an	 impact;	 and	 Antonio
Nucci,	a	true	visionary—just	talking	with	him	motivates	me	to	accomplish	more.
Last	but	certainly	not	least,	I	want	to	thank	my	family	for	putting	up	with	me

during	 this	 rewarding	 but	 frequently	 stressful	 experience!	 To	 my	 children,
Prabhleen,	 Jashminder,	 and	 Jasleen,	 for	 spending	 countless	 weekends	 without

me	 and	 understanding	 that	 Papa	 was	 working	 on	 his	 passion.	 And	 finally,
especially,	to	my	beautiful	wife,	Raman,	for	her	inspiration,	encouragement,	and
trust	 in	 me.	 If	 not	 for	 her	 support,	 this	 book	 would	 have	 remained	 merely	 a
dream,	not	a	reality.
Thank	you	all	so	much!

About	the	Author

Parminder	 Singh	 Kocher	 was	 born	 and	 raised	 in	 India	 and	 is	 a	 lifelong
technology	 learner	 with	 two	 decades	 of	 hands-on	 experience	 in	 building
enterprise-grade	software	systems.	He	has	been	with	Cisco	Systems	since	2005
and	 managed	 the	 Cisco’s	 Managed	 Services	 (CMS)	 platform,	 and	 has	 since
worked	as	an	innovation	evangelist	leading	multiple	software	groups.	Currently,
he	 is	 engineering	 director	 for	Cisco	Networking	Academy	 platform,	where	 he
leads	the	engineering	teams	responsible	for	developing	the	Academy’s	next-gen
platform	 accesses	 in	 180	 countries.	 In	 addition	 to	 bachelor’s	 and	 master’s
degrees	 in	 computer	 science,	 Kocher	 has	 an	 executive	 MBA	 from	 Baylor’s
Hankamer	 School	 of	 Business	 and	 an	 executive	 certificate	 in	 strategy	 and
innovation	from	MIT’s	Sloan	School	of	Management.	He	lives	in	Austin,	Texas,
with	his	wife	and	three	children.

PART	I

Microservices

Chapter	1

An	Introduction	to	Microservices

Technology	has	 changed,	 and	 continues	 to	 change,	 how	 the	world	 behaves.	 In
turn,	 these	 altered	 behaviors	 are	 putting	 new,	 challenging	 demands	 on	 the
technology	 that	 supports	 it	 all.	We	have	 progressed	 from	an	 era	 of	 56k	 dialup
modems	to	100Gbps	Ethernet	in	less	than	two	decades.	As	the	speed	increased,
it	 placed	greater	 demand	on	 corporations	 to	 develop	 faster	 software	 for	which
advanced	and	high-level	software	languages	were	developed	to	suit	application
needs.	Similarly,	on	the	systems	side,	we	have	evolved	from	mainframes	to	high-
speed	servers	 to	making	servers	a	commodity	 to	virtualization	and	cloud.	Now
“containerize”	 is	a	verb,	as	containers	are	being	utilized	 to	use	 resources	more
efficiently.
Along	 the	 way,	 new	 paradigms	 such	 as	 model–view–controller	 (MVC),

enterprise	integration	patterns	(EIPs),	and	service-oriented	architectures	(SOAs)
were	 released.	 Microservices-based	 architecture	 is	 now	 the	 talk	 of	 the	 tech
world.	Let’s	find	out	why.

What	Are	Microservices?
A	 microservice	 is	 an	 independent,	 standalone	 capability	 designed	 as	 an
executable	 or	 a	 process	 that	 communicates	 with	 other	 microservices	 through
standard	but	lightweight	interprocess	communication	such	as	Hypertext	Transfer
Protocol	 (HTTP),	 RESTful	 web	 services	 (built	 on	 the	 Representational	 State
Transfer	 [REST]	 architecture),	 message	 queues,	 and	 the	 like.	 What	 makes
microservices	 unique	 from	 a	 standard	 application	 is	 that	 each	microservice	 is
developed,	 tested,	 deployed,	 and	 scaled	 on	 demand	 and	 independent	 of	 other
microservices.
The	 microservice	 concept	 inherits	 all	 the	 best	 principles	 of	 software

development,	including	being	loosely	coupled,	scalable	on	demand,	and	services
oriented,	to	name	a	few.
What	 does	 standalone	 capability	 mean?	 It	 means	 that	 each	 microservice

performs	 precisely	 one	 function,	 which	 behaves	 the	 same	 for	 all	 consumers.
Take,	for	instance,	an	order	management	service	that	only	processes	orders	and
does	 nothing	 else;	 it	 does	 not	 even	 send	 notifications.	 It	 may	 call	 another

microservice	responsible	for	sending	notifications	on	processing.	This	separation
of	 functions	 provides	 enormous	 flexibility,	 as	 each	 microservice	 can	 be
managed,	maintained,	 scaled,	 extended,	 reused,	 and	 replaced	 independently	 of
other	microservices.
Given	 this	definition,	 a	microservices-based	application	 is	 simply	a	group	of

several	 independent,	 standalone	 microservices,	 each	 offering	 specific,	 well-
defined	functionality,	communicating	through	well-defined	protocols	to	provide
overall	 application	 functionality.	 You	 can	 describe	 such	 a	 paradigm	 as	 a
microservice-based	 architecture	 in	which	 each	microservice	 runs	 as	 a	 separate
process.
You	 may	 be	 wondering	 how	 this	 is	 different	 from	 SOA-based	 monolithic

applications.	 The	 difference	 is	 that	 in	 a	 monolithic	 application,	 all	 the
capabilities	are	packed	into	one	big	executable,	or	a	WAR	file,	also	known	as	a
monolithic	implementation.
Let’s	 explore	 this	 with	 a	 simple	 example:	 a	 calculator	 application	 you	 may

access	 from	 the	 web.	 In	 a	 monolithic	 application,	 all	 calculator	 operations—
addition,	subtraction,	and	so	on—may	be	written	as	separate	program	functions,
and	one	function	may	call	another	function	directly	to	complete	its	action.	There
is	 one	 process	 running,	 and	 the	 communication	 is	 through	 standard	 program
function	calls.	The	design	might	look	something	like	Figure	1.1.

Figure	1.1	Monolithic	architecture	for	a	simple	calculator	application

This	is	a	very	simple	example	for	which	microservices	would	be	overkill,	but
just	 for	 the	 sake	 of	 understanding,	 let’s	 assume	 a	 developer	 following	 the
microservices	 paradigm	 builds	 the	 calculator	 application	 by	 constructing	 each
operation	offered	by	the	calculator	as	a	separate	standalone	service,	as	shown	in
Figure	 1.2.	 In	 this	 case,	 a	 microservice	 calls	 another	 microservice	 through
interprocess	calls	over	HTTP	or	another	protocol.	In	the	previous	case,	if	a	nasty
bug	is	encountered	in	any	of	the	functions	(say,	out	of	range),	it	could	take	the
whole	 application	 down.	 With	 microservices,	 however,	 only	 the	 impacted
service	would	go	down;	the	rest	would	still	be	available	for	users.

Figure	1.2	Microservices-based	architecture	for	a	simple	calculator	application

The	purpose	of	this	simple	example	is	to	underscore	the	biggest	advantage	of
following	the	microservices	paradigm:	that	it	can	simplify	the	implementation	of
a	 complex	 application	 by	 allowing	 you	 to	 divide	 the	 application	 into
manageable,	standalone	components.	This	 simplicity	can	help	 in	various	ways,
such	as	by	enabling	you	to	add	many	capabilities	as	required	without	impacting
other	services.
Furthermore,	 each	 microservice	 can	 be	 independently	 updated	 or	 scaled	 on

demand.	For	example,	suppose	we	need	 to	create	a	new	operation	 that	uses	an
existing,	available	functionality:	say,	finding	the	square	of	a	given	number.	This
operation	is	straightforward	and	involves	minimal	to	no	touching	of	the	existing
code.	We	create	a	new	microservice	that	calls	the	standard	published	API	for	the
“multiply”	 microservice	 (see	 Figure	 1.3).	 Consequently,	 we	 have	 only	 one
microservice	 to	 write,	 compile,	 and	 deploy,	 compared	 to	 a	 monolithic
application’s	 need	 for	 recompilation,	 redeployment,	 and	 so	 on,	 with	 possible
downtime	as	a	result.

Figure	1.3	“Square	the	number”	function	easily	added	with	new	microservice

We	can	 also	 have	microservices	 that	 are	 called	 only	 by	 other	microservices,
not	directly	by	the	client	application,	as	shown	in	Figure	1.4.	For	example,	in	the
figure,	 a	 client	 may	 be	 able	 to	 call	 only	 three	 microservices	 under	 Layer	 1,
whereas	 the	 first	 microservice	 under	 Layer	 1	 may	 call	 the	 two	microservices
behind	 it	 under	 Layers	 2	 and	 3,	 as	 shown	 by	 the	 arrows.	 These	 two
microservices	are	called	helper	microservices.

Figure	1.4	A	microservice	calling	other	microservices

The	 concept	 of	microservices	 is	 not	 new,	 but	 it	 has	 been	 gaining	 popularity
recently	because	of	the	challenges	posed	by	monolithic	applications.
Let’s	 look	at	 another	example	 to	discuss	 these	challenges.	Think	about	an	e-

commerce	system	and	the	components	it	would	involve	at	a	high	level,	as	shown
in	Figure	1.5.

Figure	1.5	Basic	components	of	a	monolithic	e-commerce	system

For	 a	 small-	 to	 medium-size	 company,	 this	 system	may	 work	 well	 initially.
One	package	is	built	and	deployed	to	production	by	the	operations	team,	and	it	is
easy	 to	 provide	 horizontal	 scalability	 by	 deploying	 multiple	 copies	 of	 the
application	and	putting	a	load	balancer	in	front	of	them.	As	the	business	grows,
so	 do	 the	 required	 capabilities,	which	 further	 extends	 the	 code	 along	with	 the

team	size	and,	in	turn,	complexity	to	deploy,	release,	and	support	the	application.
Over	time,	the	application	will	become	more	complex,	making	it	harder	to	define
the	clear	ownership	of	code	and	functionality	to	application	developers.	At	that
point,	 things	 tend	 to	 fall	 apart	 and	 organizations	 begin	 to	 face	 the	 following
challenges:

•	Performance	issues

•	Scalability

•	Longer	cycles	for	regression	testing

•	Longer	cycles	to	upgrade	and	redeployment,	leading	to	an	inability	to	deploy
small	fixes	and	enhancements

•	Unscheduled	downtime

•	Potential	downtime	during	upgrades

•	Stuck	with	the	existing	technology	and	programming	language

•	No	way	to	scale	just	the	required	components	or	functionality

Of	 the	many	 impacts	 resulting	 from	these	challenges,	one	 that	 typically	goes
unseen	is	the	frustration	experienced	by	engineering	teams	and	the	increased	rate
of	attrition	that	follows.
In	 these	 situations,	 the	 microservices	 paradigm	 can	 be	 very	 useful.	 This

paradigm	is	only	useful	for	large	monolithic	applications,	as	it	comes	with	some
costs	 that	 may	 not	 be	 worthwhile	 if	 the	 application	 is	 small	 or	 is	 supporting
small	 businesses.	 It	 may	 take	 lot	 of	 investment	 to	 decompose	 the	 monolithic
application	at	this	point	of	maturity;	organizations	usually	start	developing	new
capabilities	 as	 microservices	 and	 then,	 based	 on	 return	 on	 investment,	 may
slowly	start	to	decompose	the	old	application.
Imagine	 if	 we	 have	 to	 update	 the	 shopping	 cart	 component	 in	 the	 previous

example.	 Depending	 on	 the	 architecture	 and	 legacy	 of	 the	 software,	 it	 may
require	not	only	adding	or	updating	the	code	but	also	doing	the	regression	testing
on	all	the	code	or	functions	that	touch	the	shopping	cart	component.	It	will	also
require	 recompilation,	 testing,	 and	deployment	of	 the	 entire	 application,	which
may	result	in	downtime	or	may	slow	the	application.	In	addition,	say	a	developer
feels	 that	 it	would	 have	 been	 easy	 and	 efficient	 if	 that	 particular	 functionality
were	coded	in	some	new	language	such	as	Scala.	That	desire	will	likely	remain
unfulfilled	unless	 investment	 is	available	 to	 recode	 the	complete	application	 in

that	new	language.	Basically,	the	application	developer	is	stuck	with	the	choice
his	predecessors	made,	which	may	have	been	right	at	that	time	but	is	no	longer
optimal.
Let’s	see	how	microservices	can	help	here.	As	we	discussed,	we	will	break	all

the	major	 monolithic	 components	 into	 standalone	 microservices,	 as	 shown	 in
Figure	1.6.

Figure	 1.6	 E-commerce	 system	 components	 broken	 down	 into	 standalone
microservices

These	 microservices	 are	 deployed	 separately,	 and	 each	 performs	 a	 single
function.	 If	 we	 want	 to	 modify	 the	 shopping	 cart	 microservice,	 we	 have	 less
code	 to	 work	 with—that	 is,	 just	 this	 particular	 microservice—and	 it	 will	 be
much	 easier	 to	 test	 and	 deploy.	Microservices	 not	 only	 address	 the	 challenges
posed	 by	 monolithic	 services	 but	 also	 offer	 several	 advantages	 that	 drive
organizations	toward	continuous	delivery.

Modular	Architecture
If	 we	 look	 at	 the	 history	 of	 software	 projects	 in	 the	 entire	 industry,	 only	 29
percent	of	large	projects	were	successful	within	specified	cost,	time,	and	quality,
as	 per	 chaos	 manifesto	 (The	 Standish	 Group,	 “CHAOS	 Report	 2016,”	 2016).
That	means	 71	 percent	 of	 projects	 in	 2015	 failed	 or	 were	 challenged.	 Failure
may	have	been	due	to	quality	issues,	lack	of	completion,	budget	overages,	and	so
on.	 Consequently,	 a	 lot	 of	 new	 practices	 and	 software	 management	 standards
were	put	in	place	that	were	meant	to	be	followed	by	software	organizations	(e.g.,
IEEE	Software	Engineering	Standards,	Software	Testing	Standards).	The	main

purpose	 behind	 these	 standards	 was	 to	 control	 the	 complexity	 by	 using	 best
practices.	This	 helped	 in	 two	ways:	 first,	 by	 improving	 the	 chances	 of	 project
completion;	second,	by	increasing	the	shelf	life	or	age	of	the	application.
Software	 applications	or	 platforms	have	 an	 average	 age	of	 four	 to	 six	 years,

after	which	they	fall	into	obsolescence	due	to	various	reasons.	The	reasons	may
include	 changing	 requirements	 over	 time,	 inability	 to	 scale	 due	 to	 legacy
architecture,	outdated	 technologies	given	 the	pace	of	 change	 in	 the	 technology
world,	and	so	on.	The	industry	tends	to	get	on	the	Next	Gen	bandwagon,	which
means	 rewriting	 the	 software	 or	 platform	 using	 the	 latest	 technologies,	 new
architecture,	and	best	practices.	But	at	some	point,	the	question	must	be	asked:
Does	 it	 really	 require	 changing	 every	 component—that	 is,	 the	 complete
package?	Not	necessarily.	Some	components	or	parts	may	do	much	better	given
the	new	technologies,	but	that	usually	is	not	an	option,	as	the	architecture	did	not
provide	the	modularity,	enabling	us	to	replace	individual	software	components	or
parts	with	rewritten	code.
We	have	been	developing	monolithic	applications—hence	 the	need	 to	 follow

the	 standards	 to	 deal	 with	 complexity.	 If	 we	 break	 down	 this	 complexity	 by
using	a	microservices	paradigm,	we	will	end	up	with	a	modular	architecture	that
significantly	increases	the	shelf	life.	In	addition,	we	can	immediately	reduce	our
dependence	on	multiple	standards	and	bulky	software	development	processes	to
save	time,	thus	fast-tracking	the	overall	software	development	lifecycle.
Apart	 from	 the	process	efficiencies,	a	modular	architecture	will	 also	create	a

lot	of	savings	down	the	road	when	we	want	to	upgrade	the	platform.	Instead	of
starting	from	scratch,	we	can	surgically	remove	the	outdated	microservices	and
replace	them	with	new	ones	implemented	using	the	right	technology	and	design.
This	 is	 one	of	 the	key	 long-term	benefits	 of	using	 the	microservices	paradigm
and	 one	 of	 the	 distinct	 advantages	 that	 sets	 it	 apart	 from	 others.	 However,	 in
most	 cases,	 gains	 from	 the	 increased	modularity	 alone	make	 a	microservices-
based	approach	worth	the	investment.

Other	Advantages	of	Microservices
In	addition	 to	what	we	discussed	so	far,	microservices	may	offer	 the	following
benefits	to	an	organization	and	its	engineers:

•	Simplicity.	Each	microservice	performs	only	one	distinct	 and	well-defined
function,	so	there	is	less	code	to	take	care	of,	less	cohesion	and	dependency
within	the	code,	and	a	lower	probability	of	bugs.

•	Scalability.	To	scale	a	monolithic	application,	we	need	 to	deploy	resource-
heavy	 applications	 on	 multiple	 servers	 behind	 a	 load	 balancer.	 It	 is	 not
possible	 to	 scale	 just	 a	 portion	 of	 an	 application;	 it	 is	 all	 or	 nothing.	With
microservices,	we	can	scale	out	only	the	components	that	are	expected	to	be
highly	 loaded,	 as	 shown	 in	 Figure	 1.7.	 Providing	 differentiated	 levels	 of
scalability	is	very	easy	and	a	salient	feature	of	microservices.

Figure	1.7	Scalability	comparison

•	Continuous	delivery.	Because	 of	 fewer	 interdependencies	within	 the	 code
bases	and	faster	development	cycles,	the	microservices	paradigm	enables	and
actually	lends	itself	to	a	culture	of	continuous	delivery	and	DevOps.

•	More	 freedom	 and	 fewer	 dependencies.	 Microservices	 are	 meant	 to	 be
standalone	 and	 independent.	 A	 development	 team	 can	 focus	 on	 its
microservice	 and	 freely	 enhance	 functionality	 without	 worrying	 about
breaking	 another	 microservice	 as	 long	 as	 they	 keep	 the	 interface	 contract
intact	or	implement	a	new	contract	that	is	backward	compatible.

•	Fault	isolation.	Fault	isolation	is	a	phenomenon	in	which	a	fault	in	one	part
of	 a	 system	 does	 not	 bring	 down	 the	 entire	 system.	 That	 is,	 the	 fault	 is
isolated	 from	 the	 entire	 system.	 In	 a	monolithic	 application,	 a	 fault	 in	 any
part	of	the	system	will	bring	down	the	entire	system,	as	the	system	is	a	single
executable/process.	 With	 microservices,	 a	 fault	 in	 one	 microservice	 may
bring	down	the	impacted	microservice,	but	it	will	not	necessarily	bring	down

the	entire	application	because	the	affected	microservice	is	running	in	its	own
process	 space.	 For	 example,	 in	 an	 e-commerce	 system	 based	 on
microservices	architecture,	if	the	product	review	microservice	crashes,	users
will	still	be	able	to	see	inventory,	select	items,	view	cart,	and	place	an	order.
However,	they	will	not	be	able	to	see	reviews	until	the	reviews	microservice
issue	is	resolved.	If	the	same	application	were	monolithic,	the	review	service
issue	would	possibly	shut	down	the	entire	application.

•	 Data	 segregation	 and	 decentralization.	 Unlike	 monolithic	 applications,
where	 all	 the	 data	 typically	 is	 stored	 and	 shared	 in	 a	 central	 database,
microservices	 provide	 us	 an	 opportunity	 to	 segregate	 this	 data.	 Each
microservice	usually	owns	 its	data	and	does	not	share	 its	data	directly	with
other	microservices.

•	Choices.	Unlike	a	monolithic	application,	where	all	application	components
have	 to	 use	 a	 single	 database,	 platform,	 and	 programming	 language,
microservices-based	applications	offer	the	opportunity	to	use	the	best	tool	for
each	 specific	 job.	One	microservice	might	 use	Oracle	with	 Linux	OS,	 and
another	 might	 use	 a	 NoSQL	 database	 on	 a	Microsoft	 platform.	 Long-term
commitment	to	technology	stacks	is	no	longer	necessary.

Disadvantages	of	Microservices
Nothing	comes	for	free;	 there	has	 to	be	some	cost	 in	achieving	all	 the	benefits
offered	by	microservices.	If	we	move	toward	microservices,	we	need	to	be	aware
of	the	challenges	posed	by	such	an	architecture.	Not	to	worry,	though.	In	the	next
part	of	this	book,	we	learn	about	how	to	use	certain	systems	and	applications	to
overcome	these	challenges.	For	now,	 let’s	 list	some	of	 the	challenges	posed	by
microservices:

•	Troubleshooting	complexity.	Microservices	provide	the	overall	capabilities
through	inter-microservices	communication,	which	increases	potential	points
of	 failure.	 This	 makes	 answering	 questions	 such	 as	 the	 following	 more
challenging:

•	Is	my	system	healthy	at	any	given	instance?
•	 If	 an	 end	 user	 reports	 a	 problem	 such	 as	 slow	 performance	 or	 timeouts,
where	do	I	start	my	troubleshooting?

•	 In	 a	 monolithic	 application,	 it	 is	 easier	 to	 trace	 a	 request	 end	 to	 end.
However,	in	a	microservices-based	application,	each	end	user	request	might

be	 broken	 down	 into	 multiple	 requests	 and	 might	 be	 hitting	 multiple
microservices	to	get	a	response.	Troubleshooting	can	become	a	little	tricky.

•	 Increased	 latency.	 Intraprocess	 communication	 (like	 the	 kind	 used	 in
monolithic	applications)	is	much	faster	than	the	interprocess	communication
used	by	microservices.

•	 Operational	 complexity.	 With	 several	 hundreds	 to	 thousands	 of
microservices	in	a	real-world	application,	operations	teams	have	to	deal	with
complex	 infrastructure,	 deployment,	 monitoring,	 availability,	 backups,	 and
management.	 In	 a	 way,	 we	 are	 moving	 the	 complexities	 of	 a	 monolithic
architecture	to	the	systems	side	of	microservices.	Still,	this	complexity	can	be
addressed	by	a	high	level	of	automation.

•	 Version	 control.	 Because	 a	 microservices-based	 application	 may	 have
thousands	 of	microservices,	 the	 versioning	 and	management	 becomes	 little
complex.	It	requires	better	version	control	and	management	systems.

Chapter	2

Switching	to	Microservices

Chapter	 1,	 “An	 Introduction	 to	 Microservices,”	 compared	 and	 contrasted
microservices	 with	 monolithic	 architectures.	 Now	 that	 you	 understand	 the
distinction	between	the	two,	you	are	probably	trying	to	answer	the	question,	are
microservices	 right	 for	my	 team?	 If	 you	 are	 already	 dealing	with	 the	 growing
pains	 of	monolithic	 architecture	 or	 are	 planning	 to	 build	 a	monolithic	 system,
then	it	 is	worthwhile	 to	 look	at	microservices.	Otherwise,	 there	 is	no	reason	 to
switch	 to	 this	 architecture,	 as	 it	 is	 not	 suitable	 for	 small-to-medium	 service
architectures	given	the	work	involved.	Each	microservice	comes	with	a	burden
of	extra	work	at	a	 scale	 that	 is	unnecessary	with	monolithic	architectures:	API
sets,	 process	monitoring,	 load	 balancing	 for	 performance/high	 availability,	 and
so	on,	are	required	for	each	microservice	rather	than	just	at	the	application	level.
You	 are	 actually	 trading	 monolithic	 code	 complexity	 for	 the	 operational
complexity	 of	 microservices,	 and	 if	 that	 complexity	 does	 not	 exist	 in	 your
system,	 you	will	 unnecessarily	 add	 it.	 For	 those	 reasons,	 you	 have	 to	 be	 very
careful	when	it	comes	to	moving	forward	with	this	paradigm,	or	it	can	backfire.
This	 chapter	 lays	 out	 the	 criteria	 that	 qualify	 (and	 disqualify)	 various

applications	 for	 a	 microservices-based	 architecture.	 Usually,	 executives	 and
managers	look	for	potential	business	cases	or	return	on	investment.	We	discuss
these	 considerations	 briefly	 by	 doing	 some	 simple	 cost–benefit	 modeling	 and
organization	investments.

Fatigues	and	Attributes
A	 switch	 to	 microservices	 may	 best	 be	 suited	 for	 existing	 monolithic
applications	architectures	that	show	some	of	the	following	fatigues:

•	Difficult	and	time-consuming	deployment	process

•	Large	and	complex	code	base	that	overloads	developer	IDEs

•	 Non-uniform	 scaling	 requirements	 (i.e.,	 some	 capabilities	 require	 more
scaling	than	others)

•	High	costs	of	development,	testing,	and	deployments

•	Degraded	code	quality	over	time	because	of	too	many	interdependencies

•	Application	failure	due	to	single	component	failure

Perform	 thorough	 due	 diligence	 to	 understand	 these	 fatigues	 and	 document
them	 clearly.	 Then,	 try	 to	 determine	 whether	 some	 of	 the	 following
characteristics	would	add	value	to	your	current	application:

•	Services	organized	around	business	capabilities

•	Standalone	and/or	partial	deployment	of	services

•	Asynchronous	communication

•	 Replacing	 different	 platform	 components,	 programming	 languages,	 and/or
databases	 for	 different	 parts	 of	 the	 application	 services	 for	 enhanced
performance

•	Continuous	deployment	and	continuous	integration

•	 Each	 engineering	 team	 owning	 and	 understanding	 specific	 business	 areas
such	as	order	management	or	a	shopping	cart

Thinking	 in	 these	 terms	will	give	you	a	pretty	good	 idea	of	where	you	stand
and	 whether	 it	 makes	 sense	 to	 transition	 to	 a	 microservices	 paradigm.	 Once
considerable	effort	has	been	put	into	adopting	the	microservices-based	paradigm,
there	 is	no	 turning	back.	So	before	you	decide,	you	must	also	be	aware	of	 the
unique	needs	that	are	put	on	the	organization	due	to	this	shift:

•	Culture	change.	The	organization	mindset	must	embrace	a	shift	in	the	roles
of	 engineering	 teams—from	 functional	 roles	 to	 business-centric	 roles	 with
shared	goals	and	responsibilities.	This	means	creating	joint	teams	of	product
managers,	 developers,	 testers,	 and	 operations	 to	 lead	 collectively	 and	 take
ownership	 of	 the	microservices.	 It	 also	 requires	 investments	 in	 fresh	 talent
and	in	training	existing	staff,	as	well	as	in	new	systems,	tools,	and	software.
In	 addition,	 a	 great	 deal	 of	 automation	 throughout	 the	 software	 lifecycle	 is
required	to	ensure	success.

•	Operational	 processes.	With	 a	 microservices	 paradigm,	 an	 organization’s
operational	 processes	 and	 structure	 need	 to	 be	 changed.	 The	 paradigm
demands	a	more	cross-functional	structure	 that	 takes	charge	of	deployment,
support,	 upgrade,	 and	 operation	 of	 microservices.	 The	 existing	 operational
processes	 of	 testing	 and	 deploying	 the	 monolithic	 application	 have	 to	 be

broken	down	 into	multiple	 and	 extensive	 processes	 supporting	 hundreds	 or
thousands	 of	 self-sufficient	 microservices	 and	 supporting	 communication
between	them.

Learning	Curve	for	the	Organization
There	 is	 a	whole	 new	 learning	 curve	 for	 existing	 engineering	 and	 operational
teams	 who	 have	 been	 working	 with	 and	 supporting	 the	 various	 aspects	 of
monolithic	architecture–based	applications.	This	 learning	 curve	 can	be	defined
by	the	following	new	practices	required	to	make	the	shift	toward	microservices-
based	applications:

•	Standalone	microservices.	Monolithic	 applications	 exist	 as	 one	 large	 unit
deployed	 on	 multiple	 boxes	 for	 scalability.	 With	 microservices,	 there	 are
hundreds	 to	 thousands	 of	 self-contained	 services,	 all	 requiring	 equal
attention.

•	Microservices	discovery.	The	higher	the	number	of	microservices,	the	more
complexity	 we	 encounter.	 For	 example,	 we	 need	 to	 think	 about	 how	 the
microservices	will	be	discovered—that	 is,	how	and	where	do	we	create	 the
inventory	of	microservices?	Other	challenges	 include	on-demand	scalability
and	version	control,	including	retiring	services	that	are	no	longer	needed.	The
good	news	is	 that	various	applications,	such	as	Consul,	Apache	ZooKeeper,
and	other	third-party	products,	can	be	used	to	solve	these	challenges.	These
challenges	 create	 a	 need	 to	 hire	 new	 staff	 or	 retrain	 existing	 employees,
which	may	take	a	good	part	of	the	investment.

•	Communication	between	microservices.	Determining	how	communication
will	 occur	 between	 all	 the	 services	 and	 the	 outside	 world	 includes
considering	 client	 expectations	 around	 response	 time,	 latency,	 number	 of
retries,	 and	 so	 on,	 as	 well	 as	 what	 happens	 when	 these	 service	 level
agreements	(SLAs)	or	expectations	are	not	met.	It	is	possible	that	a	standard
interface	for	communication	needs	to	be	established.

•	 Microservices	 testing.	 Testing	 practices	 and	 principles	 of	 monolithic
applications	 are	 not	 applicable	 to	 microservices-based	 applications.	 While
testing	 each	 self-sufficient	 microservice	 is	 easy,	 the	 challenge	 comes	 with
testing	the	complete	application	that	is	composed	of	hundreds	or	thousands	of
microservices.	 This	 requires	 dealing	 with	 lots	 of	 moving	 parts,	 and
integration	testing	becomes	the	most	important	aspect	of	the	overall	 testing.
Some	 of	 the	 testing	 complexities	 can	 be	 addressed	 by	 establishing	 best

practices	and	automating	the	test	cases.

•	Scaling	of	microservices.	With	microservices,	 scaling	 becomes	 easier	 and
efficient.	You	can	scale	up	or	down	the	services	you	need	on	demand.	But	it
does	 come	 at	 some	 cost.	 First,	 the	microservices	must	 be	designed	 to	 keep
scaling	 needs	 in	 mind—that	 is,	 know	 the	 usage	 demand	 for	 each
microservice.	 Second,	 scaling	 must	 be	 automated,	 which	 requires	 some
investment	 and	 learning	 curve	 with	 frameworks	 such	 as	 Mesos	 and
Marathon.	We	discuss	these	frameworks	in	detail	in	the	later	chapters.

•	Microservices	upgrading.	On	 the	surface,	 it	may	sound	simple	 to	upgrade
every	microservice,	since	each	is	self-sufficient	and	consequently	should	not
cause	 any	 disruption.	 It	 may	 actually	 be	 simple	 if	 the	 new	 version
incorporates	simple	changes	that	do	not	impact	the	outside	world.	But	when
changes	 impact	 other	 dependent	 services,	 upgrading	 may	 not	 be	 that
straightforward.	 It	 must	 be	 ensured	 that	 other	 services	 are	 up	 to	 speed	 to
consume	new	functionality	or	that	the	new	service	is	backward	compatible.

•	Microservices	 security.	 Security	 has	 always	 been	 important,	 and	 given
today’s	 cybersecurity	 threats,	 it	 has	 become	 especially	 crucial	 to
acknowledge	security	during	design	time.	A	few	aspects	that	need	to	be	dealt
with	 include	 microservice-to-microservice	 security,	 client-to-microservice
security,	data-in-motion,	and	data-at-rest	security.	Several	standards,	such	as
OAuth	 and	OpenID,	 are	 available	 to	 address	 some	 aspects	 of	 security,	 but
others	must	 be	 thought	 through	 to	 balance	 the	 security	 needs	with	 ease	 of
consumption.

•	 Microservices	 management.	 No	 matter	 which	 software	 architecture	 or
paradigm	 is	 in	 place,	 application	 management	 is	 a	 key	 requirement	 for
overall	 operational	 and	 support	 success.	 Managing	 microservices	 is	 more
complex	 than	 managing	 a	 monolithic	 application.	 The	 existing	 monitoring
and	managing	tools	or	practices	may	not	be	that	helpful.	Instead	of	a	handful
of	servers	and	applications,	we	have	to	deal	with	more	complex	new	systems
and	technologies	such	as	containers.	Therefore,	a	single	pane	of	glass	(i.e.,	a
single	interface)	to	configure,	monitor,	and	diagnose	may	be	very	helpful.

•	Monitoring	in	microservices.	With	hundreds	to	thousands	of	microservices
spread	out	over	distributed	systems,	there	are	going	to	be	lot	of	moving	parts.
Proper	checks	and	balances	must	be	put	 in	place,	 both	 in	 the	 infrastructure
(CPU,	 memory,	 I/O	 performance)	 and	 granularly	 at	 the	 application	 level
(application	 log	 files,	 API	 call	 performance).	 The	 data	 extracted	 from	 this

level	of	monitoring	should	be	easily	and	readily	available	for	operations	and
engineering	teams	to	act	with	and	improve	the	services.

•	Configuring	microservices.	For	any	service,	there	are	various	configuration
options	 provided	 by	 developers	 that	 provide	 flexibility	 in	 production	 and
make	 it	 easy	 to	 adjust	 the	 services	 depending	 on	 the	 conditions.	 Such
configuration	 includes	 settings	 such	 as	 caching,	 scaling	 parameters,	 thread
counts,	 application	 feature–specific	 flags,	 database	 connections,	 and	 so	 on.
Managing	these	aspects	for	thousands	of	services	may	well	be	a	cumbersome
task.	 A	 lot	 of	 tools	 exist	 to	 address	 some	 of	 these	 concerns,	 so	 a	 right
combination	of	 tool	sets	must	be	 selected	 to	 create	 a	 common	 interface	 for
simplicity.

•	Failure	 handling	 in	microservices.	When	 a	microservice	 fails,	 the	 check
and	balances	discussed	in	the	previous	bullets	may	help,	but	the	system	needs
to	be	designed	keeping	in	mind	that	failure	is	 inevitable.	Each	microservice
should	be	built	in	such	a	way	that	a	failure	in	a	dependent	service	should	not
cause	any	issues	with	the	performance	of	its	own	service,	let	alone	bring	the
entire	 system	 down.	 The	 overall	 intention	 should	 be	 to	 build	 toward	 self-
healing	systems.

In	light	of	all	this	information,	the	organization	must	be	fully	prepared	for	this
change	 and	 able	 to	 allocate	 the	 proper	 resources	 to	 make	 the	 transition
successful.	 A	 decision	 should	 be	 made	 only	 after	 all	 of	 these	 concerns	 are
weighed.	It	is	recommended	to	create	a	gap	list	to	easily	convey	and	understand
the	level	of	investment	required	to	move	to	a	microservices	paradigm.

Business	Case	for	Microservices
Given	all	 the	issues	we	have	discussed	so	far,	 it	may	be	difficult	 to	understand
and	build	the	business	case	for	microservices.	You	may	be	thinking,	if	it	is	more
complex	 to	 build	 and	 maintain	 microservices-based	 applications,	 why	 should
you	invest	in	doing	so?	It	is	certainly	going	to	be	more	complex,	and	the	initial
effort	 may	 be	 very	 high	 to	 train	 existing	 staff	 and	 change	 the	 organization
culture,	 yet	 the	 long-term	 benefits	would	 not	 only	 outweigh	 initial	 investment
but	also	create	savings	and	other	advantages	in	the	long	run.	What	you	need	is	a
very	 basic	 analysis	 to	 help	 you	 understand	 or	 build	 the	 business	 case	 for	 the
organization.
The	 average	 life	 of	 a	 software	 platform	 built	 on	 monolithic	 architecture	 is

typically	4	to	5	years	and	is	based	on	the	following	factors:

•	Changing	needs	and	customer	demands	driving	existing	functionality	out	of
date

•	New	business	needs

•	Lack	of	flexibility	to	adjust	or	change	existing	architecture

•	Lack	of	scale

•	Outdated	technologies

•	Slowness	caused	by	outdated	systems	and	increased	traffic	over	time

When	faced	with	these	factors,	organizations	start	looking	at	new	technologies
and	 generally	 decide	 to	 invest	 in	 a	 new	 or	 next-generation	 platform.	 This	 is
called	 the	platform	 refresh	 cycle.	 From	a	 business	 perspective,	 all	 the	 changes
required	are	fair	because	customer	expectations	and	delivery	models	change	over
time.	What	 organizations	worry	 about	 is	 the	 high	 investment	 in	 each	 cycle	 in
terms	of	both	dollars	and	time.	The	worry	 is	 fair,	as	 it	 impacts	 the	bottom-line
profits	 of	 any	 organization.	 That’s	 where	 microservices	 can	 help.	 Let’s	 do	 a
high-level	analysis	to	prove	this	point.

Cost	Components
Let’s	 use	 a	 hypothetical	 example	 to	 look	 into	 the	 cost	 components	 of	 a
monolithic	platform’s	lifecycle:

•	Cost	to	build.	Cost	 to	build	a	software	platform	from	scratch	 that	 includes
all	the	phases	of	the	software	development	lifecycle,	such	as	analysis,	design,
development,	testing,	and	release.	This	is	going	to	be	the	biggest	investment
of	the	cycle.	Let’s	call	this	cost	MCTB.

•	Cost	to	maintain.	Normal	care	and	feeding	of	the	software	platform,	such	as
applying	OS-level	patches	and	maintaining	infrastructure.	Let’s	call	this	cost
MCTM.

•	Cost	to	change/update.	Cost	of	adding	new	features,	bug	fixing,	 retesting,
regression	 testing,	 and	 releasing	over	 the	 lifecycle	 of	 the	 project.	Let’s	 call
this	cost	MCTU.

•	Cost	 to	 scale.	Cost	 to	 appropriately	 scale	 the	 platform	 to	maintain	 system
response	 time	 and	 performance	 over	 time	 as	 the	 user	 base	 increases.	 Let’s
call	this	cost	MCTS.

•	Time	 to	 market.	 Time	 taken	 to	 build	 the	 software	 platform	 or	 a	 given
update.	Time	between	analysis	and	release	on	the	platform	or	an	update.	Let’s
call	this	cost	MTTM.

For	 comparison	 purposes,	 let’s	 assume	 the	 following	 costs	 for	 the	 same
software	 built	 using	 microservices	 architecture	 since	 these	 costs	 will	 be
different:

•	Cost	to	build:	SCTB

•	Cost	to	maintain:	SCTM
•	Cost	to	change/update:	SCTU

•	Cost	to	scale:	SCTS

•	Time	to	market:	STTM

So,	 which	 platform	 architecture	 is	 more	 cost	 effective?	 Let’s	 compare
monolithic	and	microservices	based	on	each	of	the	preceding	variables.

•	Cost	 to	build:	MCTB	<	SCTB.	 If	 you	already	have	an	application	 in	place,
you	have	to	account	for	all	the	new	investment	that	may	be	required,	such	as
training	the	staff,	changing	the	culture,	hiring	new	talent,	and	updating	tools
and	 systems.	Given	 these	 considerations,	 the	 cost	 to	 build	 a	microservices-
based	application	may	be	very	high	compared	to	building	a	monolithic	one.
By	contrast,	 if	you	are	starting	a	brand-new	software	project,	 then	the	costs
may	not	differ	much	depending	on	current	organizational	capabilities.	Given
system	and	tool	needs,	the	cost	of	building	a	monolithic	application	may	still
be	lower	but	not	by	a	lot.

•	Cost	 to	 maintain:	 MCTM	 >	 SCTM.	 Maintaining	 hardware	 and	 applying
patches	 may	 cost	 downtime	 in	 certain	 conditions.	 There	 are	 lots	 of	 open
source	technologies	that	enable	all	kinds	of	automations	from	deployment	to
fault	isolation.	We	cover	many	of	these	tools	later	in	the	book.	For	example,
containerizing	 microservices	 and	 moving	 toward	 DevOps	 would	 enable
spinning	up	new	 service	 containers	on	demand,	which	 can	 save	 a	 lot	 of	 IT
time	and	create	efficient	resource	utilization,	hence	bringing	down	the	overall
cost	of	maintenance	while	reducing	the	possibility	of	downtime.

•	Cost	to	change/update:	MCTU	>	SCTU.	One	of	the	key	advantages	of	using

the	 microservices	 paradigm	 is	 that	 updating	 an	 existing	 functionality
(microservice)	or	adding	a	new	one	is	quite	simple	compared	to	dealing	with
complexity	of	a	monolithic	project	where	you	might	need	to	rebuild	the	entire
application.	The	key	differentiation	 is	 the	 time	and	effort	 it	 takes	 to	update,
build,	test,	and	deploy	a	microservice	that	performs	just	one	function	versus	a
complete	monolithic	application,	which	may	 take	hours	 just	 to	build	and	 is
very	 prone	 to	 human	 errors.	 Also,	 when	 you	 compare	 the	 testing	 and
deployment	efforts,	microservices	would	be	shorter	and	quicker,	as	discussed
earlier,	 than	 monolithic	 applications,	 which	 in	 some	 cases	 may	 require
downtime.

•	Cost	to	scale:	MCTS	>	SCTS.	Scaling	on	demand	and	only	where	needed	is	a
key	value	provided	by	microservices	as	compared	to	a	monolithic	application
that	 requires	 spinning	up	 another	 instance	of	 the	whole	 application.	Unlike
with	 a	 monolithic	 application,	 you	 could	 scale	 up	 only	 the	 components
(microservices)	 that	 show	 signs	 of	 stress	 by	 spinning	 up	 service	 containers
automatically	 and	 similarly	 destroy	 these	 containers	 when	 service	 demand
goes	down.	This	 approach	 saves	not	only	effort	but	 also	hardware/software
resources,	as	shown	in	Figure	2.1.

Figure	2.1	Scaling	comparison

•	Time	 to	market:	MTTM	 >	 STTM.	 There	 are	 two	 ways	 to	 look	 at	 time	 to
market.	First,	adding	a	new	service	and	going	live	in	production	is,	 in	most
cases,	much	faster	than	updating	a	monolithic	application.	Second,	given	the
modular	architecture	of	the	microservices	paradigm,	it,	along	with	containers,
enables	 another	 software	 delivery	 method	 that	 organizations	 have	 been
struggling	with	called	DevOps.	In	fact,	microservices	and	containers	are	key

for	 the	 success	 of	 DevOps.	 DevOps	 provides	 the	 four	 key	 ingredients
required	to	run	a	successful	software	platform:

•	Speed
•	Stability
•	Performance
•	Collaboration
DevOps	 enables	 agility	 and	 hence	 time	 to	 market.	 Organizations	 strive	 to
take	 their	offering	quickly	 to	market	 to	maintain	a	competitive	edge.	Quick
time	 to	 market	 itself	 may	 be	 the	 highest	 payback	 for	 transitioning	 to	 a
microservices	paradigm.
•	 Future	 refresh	 cycles.	 As	 discussed,	 a	 monolithic	 architecture–based
software	application	has	a	finite	average	lifetime.	Once	that	lifetime	ends,	the
organization	usually	begins	a	new	cycle,	which	ends	up	costing	 it	an	 initial
MCTB	again,	and	so	on.	But	microservices	actually	break	this	whole	concept
of	cycles	because	they	can	do	the	following:

•	 Provide	 flexibility	 to	 add	 or	 remove	microservices	 according	 to	 business
requirements,	 which	 should	 be	 straightforward	 given	 the	 modular
architecture.
•	 Upscale	 or	 downscale	 the	 system	 on	 demand	 by	 adding	 and	 removing
services	under	load	balancer.
•	 Replace	 outdated	 technologies	 per	 microservice	 as	 required,	 which
minimizes	the	cost.
Given	 all	 the	 flexibility	 provided	 by	 the	 microservices	 paradigm,	 new
business	requirements	can	be	accommodated	as	required,	and	systems	can	be
kept	up	to	speed	with	changing	business	needs.	Hence,	there	will	be	no	need
to	replace	the	entire	platform	with	a	new	generation	for	quite	a	few	years,	if
not	ever.

Keeping	 all	 the	 costs	 in	 mind,	 the	 net	 costs	 for	 microservices-based
architecture	 will	 surely	 come	 to	 much	 less	 than	 total	 costs	 for	 a	 monolithic
architecture.	Spending	over	time	may	look	something	like	that	shown	in	Figure
2.2,	with	the	net	cost	much	lower	for	microservices.	The	intersection	point	of	the
two	costs	really	depends	on	the	project	type,	scope,	and	size.

Figure	2.2	A	simplified	graphical	representation	of	this	cost	comparison

To	 conclude	 the	 business	 case,	 the	 net	 benefit	 in	 terms	 of	 cost	 savings	will
come	with	 microservices,	 but	 it	 happens	 over	 time.	 It	 does	 require	 the	 initial
investment	and	organizational	buy	in.	As	noted	earlier,	the	mere	gain	in	time	to
market	may	outweigh	all	other	benefits	for	most	organizations.
An	 organization	 must	 consider	 the	 advantages,	 the	 learning	 curve	 involved,

and	 the	 cost–benefit	 analysis	 when	 deciding	 whether	 to	 invest	 in	 a
microservices-based	architecture.

Chapter	3

Interprocess	Communication

In	monolithic	architectures,	the	communication	within	the	components	happens
via	function,	method,	or	module	calls	and	is	very	straightforward	in	most	cases.
When	 building	 microservices	 architecture,	 designing	 and	 implementing
interprocess	 communication	 is	 more	 complex.	 Although	 there	 are	 proven
techniques	 for	 managing	 interprocess	 communication	 in	 a	 microservices
architecture,	and	 it	 is	not	a	key	subject	of	 this	book,	 in	 this	chapter	we	review
some	of	the	best	practices.

Types	of	Interactions
Microservices	 typically	 expose	 their	 functionalities	 through	 APIs	 or	 web
services.	To	consume	the	web	services	over	the	network,	there	are	fundamentally
two	types	of	communication/interaction	patterns.

•	Synchronous	 communication.	 An	 interaction	 in	 which	 the	 client	 expects
immediate	 response	 while	 blocking	 everything	 else	 (e.g.,	 HTTP
request/response).

•	 Asynchronous	 communication.	 An	 interaction	 in	 which	 the	 service
response	is	not	expected	immediately.	The	client	makes	the	service	call	and
continues	 with	 its	 work.	 Examples	 include	 publish/subscribe	 and	 HTTP
request/asynchronous	response.

As	 we	 discussed	 in	 Chapter	 1,	 “An	 Introduction	 to	 Microservices,”
asynchronous	 communication	 is	 the	 preferred	 method	 of	 interaction	 between
microservices.	 Think	 what	 would	 happen	 if	 we	 were	 to	 use	 synchronous
communication	 between	 microservices.	 The	 client	 would	 be	 blocked	 until	 it
received	a	response	by	another	service	before	continuing	its	work.	What	would
happen	 if	 the	 service	were	 down	or	 has	 error?	This	 approach	would	 not	 scale
very	 well,	 and	 we	 would	 lose	 most	 of	 the	 advantages	 of	 microservices.
Therefore,	asynchronous	communication	is	the	better	alternative.
With	 asynchronous	 communication,	 the	 client	 makes	 the	 request	 to	 another

microservice	 and	 continues	 with	 other	 work	 while	 listening	 for	 incoming
responses	through	the	listener	thread.	The	listener	thread	processes	the	responses
as	and	when	they	come	in.	Problems	within	the	called	microservice	would	have
no	impact	on	the	client.	The	result	is	improved	scalability	with	loosely	coupled
services.
Another	 approach	 is	 to	 use	 publish/subscribe,	where	 the	 publisher	 publishes

the	 messages	 on,	 say,	 a	 message	 bus	 such	 as	 Kafka.	 Subscribers	 register	 for
messages	that	are	of	interest	on	the	message	bus	and	pick	those	up	for	processing
while	ignoring	the	rest.	Once	processed,	they	may	publish	the	results,	which	may
be	 picked	 up	 by	 the	 original	 publisher,	 depending	 on	 the	 message	 exchange
patterns	in	use.

Preparing	to	Write	Web	Services
Overall,	 developers	 have	 to	 decide	 three	 things	 when	 preparing	 to	 write	 web
services:

1.	Protocol.	When	it	comes	to	web	services	protocols,	we	all	know	that	HTTP
is	the	gold	standard.	It	is	the	same	protocol	used	by	web	browsers,	so	it	has
withstood	the	test	of	time.	The	biggest	advantage	is	that	it	is	very	light	and
based	 on	 a	 simple	 request/response	 model	 in	 which	 the	 client	 forms	 and
sends	 an	 HTTP	 request	 and	 the	 server	 executes	 the	 actions	 required	 and
forms	and	sends	back	an	HTTP	response.

2.	Web	service	standard.	There	are	three	primary	choices:
•	RESTful	is	widely	accepted	and	recommended.
•	 SOAP	 is	 bulky	 enough	 that	 it	 requires	 client-	 and	 server-side
implementation.
•	Data	is	an	open	protocol	used	for	building	and	consuming	RESTful	APIs.

RESTful	 is	 based	 on	 HTTP	 request	 and	 response.	 It	 is	 much	 lighter	 than
SOAP,	 and	 that’s	where	 it	 wins.	 Also,	 RESTful	 services	 are	 stateless	 and
cacheable,	which	makes	them	faster—crucial	in	supporting	mobile	requests.

3.	 Message	 format.	 There	 are	 plenty	 of	 commonly	 used	 and	 entirely
acceptable	 message	 formats	 to	 choose	 from,	 including	 XML,	 RSS,	 and
JSON.	A	favorite	of	many	developers,	however,	is	JSON,	primarily	because
it	is	text	based	and	human	readable,	and	there	are	a	variety	of	libraries	 that
can	 easily	 convert	 JSON	 to	 objects	 and	 back	 to	 the	 textual	 representation.
Because	 JSON	 does	 not	 suffer	 the	 overburden	 of	 syntax,	 JSON	 data	 is

smaller	 than	 XML	 data.	 This	 means	 faster	 processing,	 since	 it	 takes	 less
bandwidth	 to	 send	 and	 receive	messages.	 JSON	works	 especially	well	 for
handheld	 and	mobile	 devices	 such	 as	 cell	 phones	 and	 tablets,	which	 have
limited	 storage,	 light	 computing,	 and	 low	 bandwidth	 requirements	 to
transmit	the	messages	over	the	web.

Different	people	have	different	needs	and	preferences,	so	what	we	present	 in
this	 chapter	 are	 just	 recommendations.	 Make	 your	 own	 choices	 according	 to
your	needs,	performance	requirements,	and	comfort	level.

Microservice	Maintenance
Once	you	build	 the	 communications	 between	microservices,	 you	 need	 to	 keep
them	 up	 to	 date	 and	 maintain	 them.	 The	 broadly	 applied	 adage,	 “change	 is
constant,”	 is	 applicable	 to	 your	 software	 also.	 Requests	 to	 adjust	 existing
functionality	 will	 always	 accompany	 new	 requirements	 that	 pour	 in,	 in	 some
cases	 necessitating	 changes	 to	 these	 web	 services.	 That	 is	 one	 complexity	 of
microservices,	as	we	have	already	discussed.	Here	are	some	things	that	will	need
to	be	taken	care	of	to	address	the	changing	needs:

•	Supporting	existing	client	implementations.	There	may	be	times	when	you
have	 to	 update	 the	 interfaces	 as	 you	modify	 the	 core	 functionality	 of	 your
microservice.	You	must	 take	care	of	backward	compatibility	of	your	micro‑
service	 because	 chances	 are	 that	 one	 or	 more	 other	 microservices
(consumers)	are	making	use	of	 this	 published	 interface	 for	 communication.
So	you	have	to	make	sure	you	still	support	the	old	version	until	the	consumer
microservices	 team	 changes	 its	 implementation	 to	 consume	 your	 new
interface.

•	Failsafe	design.	 If	a	called	web	service	 is	down,	you	can	address	 it	 in	 few
ways,	but	the	simplest	is	to	add	timeout	in	your	client	code.	On	the	provider
side,	cover	the	error	cases	by	returning	proper	error	codes	or,	in	some	cases,
default	values.	This	practice	also	improves	troubleshooting	efforts.

•	Monitoring.	 Proactively	 monitor	 microservices	 by	 calling	 each	 at	 regular
intervals	 or	 through	 other	 methods.	 Take	 appropriate	 action	 if	 any	 of	 the
microservices	is	down.	You	may	have	to	create	a	fine	balance,	as	monitoring
calls	 cause	 extra	 traffic.	 You	 can	 use	 frameworks	 such	 as	 Marathon	 to
achieve	availability,	orchestration,	and	the	like.	If,	for	instance,	you	want	two
microservices	instances	to	be	running	and	one	goes	down,	Marathon	has	the

heartbeat	 mechanism	 to	 detect	 it	 and	 will	 spin	 up	 another	 web	 server
instance.

•	Queue.	Use	the	publish/subscribe	method	when	building	asynchronous	web
services.	The	advantage	is	that	even	when	the	service	goes	down,	it	will	pick
up	the	request	from	the	bus	when	it	comes	back	up.

When	we	convert	 a	monolithic	 application	 to	a	microservices	architecture,	 it
results	 in	 several	 hundreds	 of	microservices	 and	 thousands	 of	web	 services	 or
messaging	 services	 for	 communication	 between	 these	 microservices,	 so
following	the	best	practices	in	these	areas	are	paramount.

Discovery	Service
What	 happens	 when	 you	 have	 hundreds	 or	 thousands	 of	 microservices?	 In
addition,	 perhaps	 you	 may	 have	 to	 provide	 multiple	 web	 services	 per
microservice	even	for	same	function—for	example,	a	different	client-based	web
service.	This	is	not	a	big	issue	in	a	monolithic	architecture,	since	the	client	will
make	 one	 call	 and	 the	 rest	 will	 be	 taken	 care	 of	 by	 the	 application.	 But	 in
microservices-based	architectures,	two	big	issues	arise:

•	 Clients	 have	 to	 call	 multiple	 services	 at	 same	 time	 to	 achieve	 the	 same
functionality	 that	 they	 previously	 got	 with	 just	 one	 call	 in	 a	 monolithic
application.

•	Clients	will	have	to	know	the	location	of	the	services.

Let’s	illustrate	with	an	example.	Say	a	user	is	accessing	a	library	management
application	and	wants	 to	review	his	account	page.	The	account	page	shows	the
book	 checkout	 history,	 recommendations,	 current	 cart,	 payments,	 account
settings,	and	so	on.	If	the	application	is	based	on	a	monolithic	architecture,	when
the	 user	 clicks	My	Account,	 the	 service	 call	 shows	 him	 the	My	Account	 page
while,	 in	 the	 backend,	 the	 application	 does	 the	 magic	 by	 calling	 various
functions	 and	 looking	 up	 the	 database.	 For	 handheld	 and	 mobile	 devices,	 a
different	 set	 or	 subset	 of	 calls	 may	 be	 required	 given	 the	 real	 estate	 and
processing	power,	which	adds	to	the	complexity.
With	 a	 microservices-based	 architecture,	 a	 client	 would	 be	 responsible	 for

calling	 all	 the	 required	 microservices,	 such	 as	 the	 checkout	 cart,	 payment
information,	and	account	settings.	This	approach	would	be	very	 inefficient	and
would	result	in	a	rigid,	or	“hardcoded,”	way	of	doing	things.	We	would	lose	the

flexibility	to	make	changes	such	as	further	dividing	a	microservice	into	multiple
microservices	when	required,	or	vice	versa.
In	addition,	the	client	would	have	to	know	the	location	of	all	the	microservices

that	need	to	be	called	for	the	My	Account	page.	We	therefore	need	a	system	that
would	 act	 as	 the	 overall	 entry	 point	 for	 the	 clients	 and	 the	 external	 calls	 and
another	system	that	stores	the	up-to-date	locations	of	the	microservices.

API	Gateway
An	API	gateway	addresses	the	first	problem	and	will	act	as	an	entry	point	for	all
the	 calls.	 It	 is	 responsible	 for	 receiving	 the	 client	 requests,	 calling	 all	 the
required	 microservices	 and	 sending	 back	 the	 aggregated	 results	 from
microservices	 to	 complete	 the	 client	 request.	With	 an	API	 gateway,	 the	 client
makes	 only	 a	 single	 call	 to	 invoke	 the	 service.	 This	 model	 offers	 various
advantages:

•	 Internal	 complexity	 of	 the	 application	 is	 hidden	 from	 the	 client,	 thus
simplifying	the	client	code.

•	 It	 provides	 more	 flexibility	 for	 changing,	 combining,	 dividing,	 adding,	 or
removing	microservices	as	required.

•	 It	 reduces	 the	 round	 trips	 between	 client	 and	 application,	 hence	 increasing
efficiency.

The	API	gateway	can	also	serve	as	a	point	for	load	balancing,	authentication,
monitoring,	and	management.	It	may	provide	different	APIs	for	different	clients,
such	as	web	and	mobile,	and	may	prioritize	the	requests.
The	biggest	drawback	of	this	model	is	that	API	gateway	can	become	a	single

point	 of	 failure	 and	 a	 bottleneck	 from	 both	 a	 performance	 and	 a	 development
perspective.	Understand	that	this	API	gateway	has	to	be	customized,	configured
and	 maintained	 by	 multiple	 teams,	 so	 the	 process	 must	 be	 efficient	 and
lightweight.	For	example,	it	must	be	kept	up	to	date	as	we	modify,	add,	or	delete
the	microservices.	From	an	operational	performance	perspective,	an	elastic	load
balancer	would	make	sure	performance	and	availability	metrics	are	met.

Service	Registry
With	thousands	of	microservices	in	place,	our	API	gateway	also	needs	to	know
locations	such	as	the	IP	addresses	of	all	the	services	so	that	it	can	do	its	job.	The
idea	behind	service	registry	is	that	it	provides	a	database	of	all	the	microservices

and	 their	 locations,	 and	 the	 database	 can	 be	 queried	 when	 required.	 The
microservice	developer	needs	to	take	care	of	creating	and	maintaining	a	service
registry.
The	logic	should	be	such	that	when	a	microservice	comes	up,	it	registers	itself

with	this	service	registry.	When	a	client	makes	a	call,	the	API	gateway	looks	up
the	location	of	the	required	microservices,	makes	those	calls,	and	aggregates	the
results	to	complete	the	client	request.	At	a	high	level,	this	is	what	is	required,	but
as	we	know,	things	are	not	that	simple.
What	if	we	lose	the	registry	data?	To	solve	this	problem,	we	have	several	open

source	 tools,	 such	 as	 Consul	 and	 SkyDNS,	 that	 actually	 discover	 the
microservices	and	make	sure	they	are	up	and	running.	For	example,	Consul	is	a
matured	 discovery	 tool	 that	 can	 use	 custom	 DNS	 names	 to	 access	 the
microservices	 and	 store	 this	 information	 in	 the	 registry.	 It	 can	 also	 perform
constant	health	checks	and	keep	the	clusters	healthy.

Putting	It	All	Together
Let’s	 look	at	a	simple	system	and	 then	extend	 it	on	 the	basis	of	what	we	have
learned.	Figure	3.1	shows	a	simple	microservices-based	model.	At	this	point,	the
client	 is	 responsible	 for	 calling	 all	 the	 microservices	 to	 complete	 the	 user
request.

Figure	 3.1	 Simple	 model	 in	 which	 client	 is	 responsible	 for	 calling	 each
microservice

Let’s	 add	 an	 API	 gateway	 to	 encapsulate	 all	 the	 business	 logic	 of	 the

application	 and	 hide	 the	 complexity	 from	 the	 client	 service.	 This	 makes	 the
client	 much	 simpler	 by	 enabling	 a	 single	 call	 to	 get	 the	 job	 done,	 as	 seen	 in
Figure	3.2.

Figure	 3.2	Microservices-based	 model	 with	 API	 gateway	 added,	 enabling	 a
single	call	to	get	the	job	done

Now	let’s	add	a	service	registry	so	that	the	API	gateway	can	query	it	to	know
the	 location	 of	 each	 microservice,	 as	 required.	 As	 we	 discussed,	 all	 the
microservices	 (a	 to	 z	 and	 1	 through	 3	 in	 the	 figures)	 register	 with	 a	 registry
service	 and	 API	 gateway.	 When	 a	 new	 request	 comes	 in,	 the	 API	 gateway
figures	out	what	microservices	need	to	be	called.	It	then	queries	for	their	location
from	 the	 registry	 service	 and	 makes	 the	 calls.	 Furthermore,	 it	 aggregates	 the
results	and	sends	the	HTTP	response	back	to	the	client.	See	Figure	3.3.

Figure	3.3	Microservices-based	model	with	registry	service	incorporated

This	 looks	 a	 little	 complex	 but	 is	 really	 straightforward.	 Let’s	 take	 it	 a	 step
further	and	try	to	scale	our	individual	services,	as	one	of	the	key	advantages	of
microservices	is	the	ability	to	scale	to	accommodate	the	usage.	All	that	is	needed
is	an	additional	load	balancer	where	required.	Load	balancing	should	be	done	at
the	 microservices	 level,	 which	 is	 critical	 for	 scalability,	 and	 also	 at	 the	 API
gateway	 and	 service	 registry	 levels,	 as	 they	 can	 become	 bottlenecks.	A	model
like	the	one	depicted	in	Figure	3.4	would	make	sense.

Figure	3.4	Microservices-based	model	with	additional	load	balancer

We	 learn	 more	 about	 scaling	 microservices-based	 applications	 in	 Part	 III,
“Hands-On	 Project—Putting	 Learning	 into	 Practice,”	 where	 you	 will	 see	 a
hands-on	example	with	Docker.

Chapter	4

Migrating	 and	 Implementing
Microservices

By	 this	 point	 you	know	what	microservices	 are	 and	how	 they	work.	 If	 you’re
still	 reading,	 I	 have	 accomplished	my	 first	 goal:	 piquing	 your	 interest	 enough
that	you	are	considering	implementing	microservices	yourself!	Now	it’s	time	to
get	down	to	brass	tacks:	namely,	the	very	critical	 topic	of	how	to	approach	the
transition	to	microservices.

The	Need	for	Transition
You’ll	recall	that	a	monolithic	application	is	very	large	(in	terms	of	lines	of	code
[LoC])	and	complex	(in	terms	of	functions	interdependencies,	data,	etc.),	serving
hundreds	of	thousands	of	users	across	geographical	regions	and	requiring	several
developers	and	IT	engineers.	A	monolithic	app	may	look	something	like	Figure
4.1.

Figure	4.1	Basic	structure	of	a	monolithic	app

Sometimes,	even	with	all	these	characteristics,	the	application	might	run	fine	at
first.	 You	may	 not	 encounter	 challenges	 in	 terms	 of	 application	 scalability	 or
performance.	 But	 with	 time	 and	 usage,	 issues	 will	 arise,	 and	 they	 may	 be
different	for	different	applications.	For	example,	for	a	cloud	or	web	application,
you	may	hit	scalability	issues	due	to	more	users	consuming	your	services,	or	it
may	become	costly	and	hard	to	release	regular	new	updates	due	to	longer	build
times	 and	 regression	 testing.	 As	 shown	 in	 Figure	 4.2,	 monolithic	 application
users	or	the	developers	may	experience	one	or	more	issues	listed	on	the	right.

Figure	4.2	Potential	issues	with	a	monolithic	app

That’s	when	a	migration	to	microservices	may	start	sounding	like	more	than	a
trendy	 idea;	 it	 will	 sound	 like	 a	 lifesaver.	 We	 already	 learned	 a	 bit	 about
microservices	 in	 previous	 chapters,	 so	 we	 know	 our	 transition	 will	 look
something	like	the	application	shown	in	Figure	4.3.

Figure	4.3	Transition	from	monolithic	to	microservices

So,	 how	 do	 we	 go	 about	 making	 such	 a	 change?	 There	 are	 two	 possible
scenarios:	 creating	 a	 brand-new	 application	 or	 converting	 or	 migrating	 a
monolithic	application	that	already	exists.	The	latter	scenario	is	far	more	likely,
but	 it	 is	 worth	 knowing	 the	 ins	 and	 outs	 of	 both	 scenarios	 regardless	 of	 the
current	situation.

Creating	a	New	Application	with	Microservices
Before	we	begin,	 let	me	say	 that	 I	have	not	seen	many	real-world	scenarios	of
building	 a	 microservices-based	 application	 from	 scratch.	 Typically,	 an
application	is	already	in	place,	and	most	applications	I	have	worked	on	are	more
of	a	transition	to	a	microservices	architecture	from	a	monolithic	architecture.	In
these	cases,	the	intention	of	architects	and	developers	has	always	been	to	reuse
some	of	 the	existing	 implementation.	As	skills	become	readily	available	 in	 the
market	 and	 some	 successful	 implementations	 are	 published,	we	will	 see	more
examples	 of	 building	 microservices-based	 applications	 from	 scratch,	 so	 it	 is
certainly	worthwhile	to	discuss	this	scenario.
Let’s	 say	you	have	 all	 the	 requirements	 figured	out	 and	 ready	 to	go	 into	 the

architecture	 design	 of	 the	 application	 you	 are	 going	 to	 build.	 There	 are	many
common	 best	 practices	 you	 need	 to	 think	 about	 as	 you	 get	 started,	 which	 are
covered	in	the	following	sections.

Organization	Readiness
As	we	discussed	 in	Chapter	2,	“Switching	 to	Microservices,”	 the	first	question
you	have	 to	 ask	yourself	 is	whether	your	organization	 is	 ready	 to	 transition	 to
microservices.	 That	 means	 the	 various	 departments	 of	 your	 organization	 now
need	to	think	differently	about	building	and	releasing	software	in	the	following
ways:

•	Team	structure.	The	monolithic	application	team	(if	one	exists)	needs	to	be
broken	down	into	several	small	high-performance	teams	aware	of	or	trained
in	microservices	 best	 practices.	As	 you	 saw	 in	 Figure	4.3,	 the	 new	 system
will	consist	of	a	set	of	independent	services,	each	responsible	for	offering	a
specific	service.	This	is	one	key	advantage	of	the	microservices	paradigm—it
reduces	 the	 communication	 overheads,	 including	 those	 multiple	 nonstop
meetings.	Teams	should	be	organized	by	business	problems	or	areas	they	are
trying	to	address.	The	communication	then	becomes	about	the	timing	and	set
of	standards/	protocols	 to	 follow	so	 that	 these	microservices	can	work	with
each	other	as	one	platform.

•	Agility.	 Each	 team	must	 be	 prepared	 to	 function	 independently	 of	 others.
They	should	be	the	size	of	a	standard	scrum	team;	otherwise,	communication
will	become	an	 issue	again.	Execution	 is	 the	key,	 and	each	 team	should	be
able	to	address	the	changing	business	needs.

•	Tools	and	training.	One	of	the	key	needs	is	the	organization’s	readiness	to
invest	in	new	tools	and	people	training.	The	existing	tools	and	processes,	in
most	 cases,	 would	 need	 to	 be	 retired	 and	 new	 ones	 picked	 up.	 This	 will
require	a	large	capital	investment	as	well	as	investment	in	hiring	people	with
new	 skills	 and	 retraining	 existing	 staff	 members.	 In	 the	 long	 term,	 if	 the
decision	 is	 right	 to	get	on	microservices,	organizations	will	see	savings	and
recoup	the	investment.

Services-Based	Approach
Unlike	with	monolithic	applications,	with	microservices	you	need	to	take	a	self-
sustained	 services-based	 approach.	 Think	 of	 your	 application	 as	 a	 bunch	 of
loosely	coupled	services	that	communicate	with	each	other	to	provide	complete
application	 functionality.	 Each	 service	 must	 be	 thought	 of	 as	 an	 independent,
self-contained	 service	 with	 its	 own	 lifecycle	 that	 can	 be	 developed	 and
maintained	 by	 independent	 teams.	 These	 teams	 may	 select	 from	 a	 variety	 of
technologies,	 including	 languages	 or	 databases	 that	 best	 suit	 their	 services’

needs.	For	example,	for	an	e-commerce	site,	the	team	would	write	a	completely
independent	 service,	 such	as	a	 shopping	cart	microservice,	with	an	 in-memory
database,	 and	 another	 one,	 such	 as	 an	 ordering	microservice,	with	 a	 relational
database.	A	real-world	application	may	employ	microservices	for	basic	functions
such	 as	 authentication,	 account,	 user	 registration,	 and	 notification	 with	 the
business	 logic	 encapsulated	 in	 an	 API	 gateway	 that	 calls	 these	 microservices
based	on	the	client	and	external	requests.
Just	 a	 reminder:	 a	 microservice	 may	 be	 a	 small	 service	 implemented	 by	 a

single	 developer	 or	 a	 complex	 service	 requiring	 a	 few	 developers.	 With
microservices,	 the	 size	 does	 not	 matter;	 it	 all	 depends	 on	 one	 function	 that	 a
service	has	to	provide.
Other	aspects	 that	must	be	considered	at	 this	point	 are	 scaling,	performance,

and	security.	Scaling	needs	can	be	different	and	provided	on	an	as-needed	basis
at	each	microservice	level.	Security	should	be	thought	of	at	all	levels,	including
data	at	rest,	interprocess	communication,	data	at	motion,	and	so	on.

Interprocess	(Service-to-Service)	Communication
We	 discussed	 the	 topic	 of	 interprocess	 communication	 in	 depth	 in	 Chapter	 3,
“Interprocess	Communication.”	Key	aspects	that	must	be	thought	of	are	security
and	communication	protocol.	Asynchronous	communication	is	the	way	to	go,	as
it	keeps	all	requests	on	track	and	does	not	hold	resources	for	extended	periods	of
time.
Using	 a	message	bus	 such	 as	RabbitMQ	may	prove	 to	 be	 beneficial	 for	 this

kind	of	communication.	It	 is	simple	and	can	scale	 to	hundreds	of	 thousands	of
messages	per	second.	To	prevent	the	messaging	system	from	becoming	a	single
point	of	failure	if	it	goes	down,	the	messaging	bus	must	be	properly	designed	for
high	availability.	Other	options	include	ActiveMQ,	which	is	another	lightweight
messaging	platform.
Security	is	key	at	 this	stage.	In	addition	to	selecting	the	right	communication

protocol,	industry	standard	tools	such	as	AppDynamics	may	be	used	to	monitor
and	 benchmark	 the	 interprocess	 communication.	 Any	 anomalies	 must	 be
reported	automatically	to	the	security	team.
When	there	are	thousands	of	microservices,	it	does	become	complex	to	handle

everything.	We	already	discussed	how	to	address	such	issues	through	discovery
services	and	API	gateways	in	Chapter	3.

Technology	Selection

The	biggest	advantage	of	transitioning	to	microservices	is	that	it	enables	choices.
Each	 team	can	 independently	select	 the	 language,	 technology,	database,	and	so
on,	 that	 is	 the	 best	 fit	 for	 the	 given	 microservice.	 Usually	 in	 a	 monolithic
approach,	 the	 team	 does	 not	 have	 this	 flexibility,	 so	 make	 sure	 you	 do	 not
overlook	and	miss	the	opportunity.
Even	if	a	team	is	handling	multiple	microservices,	each	microservice	must	be

looked	 at	 as	 a	 self-contained	 service,	 and	 it	 needs	 be	 analyzed.	 Scalability,
deployment,	build	time,	integrations	and	plugins	operability,	and	so	on,	must	be
kept	 in	 mind	 when	 choosing	 the	 technology	 for	 each	 microservice.	 For
microservices	with	lighter	data	but	faster	access,	an	in-memory	database	may	be
most	 suitable,	 whereas	 others	 may	 share	 the	 same	 relational	 or	 NoSQL
databases.

Implementation
Implementation	 is	 the	 critical	 phase;	 this	 is	 where	 all	 the	 training	 and	 best
practices	 knowledge	 comes	 in	 handy.	 Some	 of	 the	 critical	 aspects	 to	 keep	 in
mind	include	the	following:

•	 Independency.	 Each	 microservice	 should	 be	 highly	 autonomous	 with	 its
own	lifecycle	and	 treated	as	 such.	 It	needs	 to	be	developed	and	maintained
without	any	dependencies	on	other	microservices.

•	Source	control.	A	proper	version	control	system	must	be	put	at	place,	and
each	microservice	must	follow	the	standards.	Standardizing	on	a	repository	is
also	helpful,	as	it	ensures	all	the	teams	use	the	same	source	control.	It	helps
in	various	aspects,	such	as	code	review,	providing	easy	access	to	all	the	code
in	one	place.	In	the	long	term,	it	makes	sense	to	have	all	the	services	on	the
same	source	control.

•	Environments.	 All	 different	 environments,	 such	 as	 dev,	 test,	 stage,	 and
production,	must	 be	 properly	 secured	 and	 automated.	 The	 automation	 here
includes	the	build	process—that	way	the	code	can	be	integrated	as	required,
mostly	 on	 a	 daily	 basis.	 There	 are	 several	 tools	 available,	 and	 Jenkins	 is
widely	used.	Jenkins	is	an	open	source	tool	that	helps	automate	the	software
build	 and	 release	 process	 including	 continuous	 integration	 and	 continuous
delivery.

•	Failsafe.	Things	can	go	wrong,	and	software	failure	is	inevitable.	Handling
failures	of	downstream	services	must	 be	 addressed	within	 the	microservice
development.	Failure	of	other	services	must	be	graceful	to	the	extent	that	the

failure	 should	 be	 invisible	 to	 the	 end	 user.	 This	 includes	managing	 service
response	 times	 (timeouts),	 handling	API	 changes	 for	 downstream	 services,
and	limiting	the	number	of	auto-retry.

•	Reuse.	With	microservices,	 don’t	 be	 shy	 about	 reusing	 the	 code	 by	 using
copy	 and	 paste,	 but	 do	 it	 within	 limits.	 This	 may	 cause	 some	 code
duplication,	but	 it’s	better	 than	using	shared	code	that	may	end	up	coupling
services.	 In	 microservices,	 we	 want	 decoupling,	 not	 tight	 coupling.	 For
example,	you	will	write	code	to	consume	the	output	response	from	a	service.
You	can	copy	this	code	every	time	you	call	the	same	service	from	any	client.
Another	way	to	reuse	code	is	by	creating	common	libraries.	Multiple	clients
can	 use	 the	 same	 library,	 but	 then	 each	 client	 should	 be	 responsible	 for
maintaining	 its	 libraries.	 It	 can	 sometimes	 become	 challenging	 when	 you
create	too	many	libraries	and	each	client	is	maintaining	a	different	version.	In
that	case,	you	may	have	to	include	multiple	versions	of	same	library,	and	the
build	 process	 may	 become	 difficult	 due	 to	 backward	 compatibility	 and
similar	concerns.	Depending	on	your	needs,	you	can	go	either	way	as	long	as
you	can	control	the	number	of	libraries	and	versions	by	clients	and	put	a	tight
process	 around	 them.	 This	 will	 certainly	 save	 you	 from	 lot	 of	 code
duplication.

•	Tagging.	 Given	 the	 sheer	 number	 of	 microservices,	 debugging	 a	 problem
may	become	difficult,	so	you	need	to	do	some	kind	of	instrumentation	at	this
stage.	One	of	the	best	practices	is	 to	 tag	each	request	with	a	unique	request
ID	 and	 log	 each	 one	 of	 them.	 This	 unique	 ID	will	 identify	 the	 originating
request	 and	 should	 be	 passed	 by	 each	 service	 to	 any	 downstream	requests.
When	you	see	issues,	you	can	clearly	track	back	through	logs	and	identify	the
problematic	 service.	 This	 solution	will	 be	most	 effective	 if	 you	 establish	 a
centralized	logging	system.	All	the	services	should	log	in	all	the	messages	to
this	 shared	 system	 in	 a	 standardized	 format	 so	 that	 teams	 can	 replay	 the
events	as	 required	 all	 from	one	 place,	 from	 infrastructure	 to	 application.	A
shared	library	for	centralized	logging	is	worth	looking	into,	as	we	previously
discussed.	There	are	several	log	management	and	aggregation	tools	out	there
in	 the	market,	 such	 as	 ELK	 (Elasticsearch,	 Logstash,	 Kibana)	 and	 Splunk,
that	are	ideal.

Deployment
Automation	 is	 the	 key	 during	 deployment.	 Without	 it,	 success	 with	 a
microservices	 paradigm	 would	 be	 almost	 impossible.	 As	 we	 discussed,	 there

may	 be	 hundreds	 to	 thousands	 of	 microservices,	 and	 for	 the	 agile	 delivery,
automation	is	a	must.
Think	 of	 deploying	 thousands	 of	microservices	 and	maintaining	 them.	What

happens	when	one	of	 the	microservices	goes	down?	How	do	you	know	which
machine	 has	 enough	 resources	 to	 run	 your	 microservices?	 It	 becomes	 very
complicated	to	manage	this	without	automation	in	place.	Various	tools,	such	as
Kubernetes	 and	 Docker	 Swarm,	 can	 be	 used	 to	 automate	 the	 deployment
process.	 Given	 the	 importance	 of	 this	 topic,	 a	 whole	 chapter,	 Chapter	 9,
“Container	Orchestration,”	is	dedicated	to	deployment.

Operations
The	operations	part	of	the	process	needs	to	be	automated	as	well.	Again,	we	are
talking	 about	 hundreds	 to	 thousands	 of	 microservices—organizational
capabilities	 need	 to	 mature	 enough	 to	 handle	 this	 level	 of	 complexity.	 You’ll
need	a	support	system,	including	the	following:

•	 Monitoring.	 From	 infrastructure	 to	 application	 APIs	 to	 last-mile
performance,	 everything	 should	 be	 monitored,	 and	 automatic	 alerts	 with
proper	 thresholds	should	be	put	 in	place.	Consider	building	 live	dashboards
with	data	and	alerts	that	pop	up	during	issues.

•	On-demand	scalability.	With	microservices,	scalability	is	the	simplest	task.
Provision	another	 instance	of	 your	microservice	you	want	 to	 scale	 and	 just
put	 it	behind	 the	existing	 load	balancer	and	you	are	all	 set.	But	 in	a	 scaled
environment,	this	also	needs	to	be	automated.	As	we	will	discuss	later,	it	is	a
matter	of	setting	up	an	integer	value	to	tell	the	number	of	instances	you	want
to	run	for	a	particular	microservice.

•	API	exposure.	 In	most	cases,	you	will	want	 to	expose	 the	APIs	externally
for	 external	 users	 to	 consume.	 This	 is	 best	 done	 by	 using	 an	 edge	 server,
which	can	handle	all	the	external	requests.	It	can	utilize	the	API	gateway	and
discovery	service	 to	do	its	 job,	and	you	can	use	one	edge	server	per	device
type	(e.g.,	mobile,	browser)	or	use	case.	An	open	source	application	created
by	Netflix,	called	Zuul,	can	be	utilized	for	this	function	and	beyond.

•	Circuit	breaker.	Sending	a	request	to	a	failed	service	is	pointless.	Hence,	a
circuit	breaker	can	be	built	that	tracks	the	success	and	failure	of	every	request
made	to	every	service.	In	the	case	of	multiple	failures,	all	the	requests	to	that
particular	service	should	be	blocked	(break	 the	circuit)	 for	a	set	 time.	After
the	 set	 time	 expires,	 another	 attempt	 should	 be	made,	 and	 so	 on.	Once	 the

response	 is	 successful,	 reconnect	 the	 circuit.	 This	 should	 be	 done	 at	 the
service	 instance	 level.	 Netflix’s	 Hystrix	 provides	 an	 open	 source	 circuit-
breaker	implementation.

Migrating	a	Monolithic	Application	to	Microservices
While	 most	 of	 the	 best	 practices	 for	 building	 a	 new	 microservices-based
application	apply	 to	migrating	from	an	existing	monolithic	application	as	well,
there	 are	 some	additional	guidelines	 that,	 if	 followed,	will	make	 the	migration
simpler	and	more	efficient.
Although	it	may	sound	correct	to	convert	the	whole	monolithic	application	to	a

completely	microservices-based	 application,	 it	may	 not	 be	 efficient	 or	may	 be
very	 costly	 in	 some	 cases	 to	 convert	 every	 function	 or	 capability	 into
microservices.	You	might	end	up	writing	the	application	from	scratch,	after	all.
The	right	way	to	migrate	may	require	a	stepwise	approach,	as	shown	in	Figure
4.4.

Figure	4.4	Basic	migration	steps,	monolithic	to	microservices

The	 next	 question	 is,	 Where	 do	 we	 start	 with	 the	 current	 monolithic
application?	If	the	application	is	really	old	and	it	would	be	time	consuming	and
difficult	to	take	pieces	out	(i.e.,	if	there	is	very	high	level	of	cohesiveness),	then
it	is	probably	better	to	start	from	scratch.	In	other	cases	where	parts	of	the	code
can	 be	 disabled	 quickly	 and	 the	 technology	 architecture	 is	 not	 completely
outdated,	it	is	better	to	start	with	rebuilding	the	components	as	microservices	and
replace	the	old	code.

Microservices	Criteria
The	question	 then	becomes	what	 components	 should	be	migrated	 first	 or	 even
migrated	at	all.	That	brings	us	to	what	I	call	the	“microservices	criteria,”	which
outline	one	of	the	possible	ways	to	select	and	prioritize	the	functions	that	should
be	migrated	 to	microservices.	 They	 are	 a	 set	 of	 rules	 you	 establish	 that	 either

qualifies	or	disqualifies	the	conversion	of	your	existing	monolithic	application’s
components	to	microservices	given	the	organization’s	needs	at	that	time.
That	 “time”	 is	 very	 important	 here	 because	 with	 time	 the	 needs	 of	 the

organization	may	 change,	 and	 you	may	 have	 to	 come	 back	 and	 convert	more
components	 to	 microservices	 later.	 In	 other	 words,	 with	 changing	 needs,
additional	 components	 of	 your	 monolithic	 application	 may	 qualify	 for	 the
conversion.
Here	are	best	practices	that	can	be	considered	as	microservices	criteria	during

the	conversion	process:

•	Scale.	You	need	to	determine	which	functions	are	highly	used.	Convert	 the
highly	 used	 services	 or	 application	 functionality	 as	 microservices	 first.
Recall,	 a	 microservice	 performs	 only	 one	 well-defined	 service.	 Keep	 the
principle	in	mind	and	divide	the	application	accordingly.

•	Performance.	There	likely	are	components	that	are	not	performing	well,	and
other	alternatives	are	readily	available.	It	may	be	there	is	open	source	plugin
available,	or	you	may	want	 to	build	a	 service	 from	scratch.	One	of	 the	key
things	 to	 keep	 in	mind	 is	 the	 boundary	 of	 a	microservice.	As	 long	 as	 you
design	your	microservice	in	such	a	way	that	 it	does	one	and	only	one	thing
well,	it	is	good.	Determining	the	boundary	is	often	going	to	be	hard,	and	you
will	 find	 it	 easier	 to	 do	 this	 with	 practice.	 Another	 way	 to	 look	 at	 the
microservice	 boundary	 is	 that	 you	 should	 be	 able	 to	 rewrite	 the	 whole
microservice	 in	 a	 few	weeks’	 time	 (if/when	 required)	 as	 opposed	 to	 taking
few	months	to	rewrite	the	service.

•	Better	technology	alternatives	or	polyglot	programming.	Domain-specific
programming	 languages	 can	 be	 employed	 to	 help	 with	 problem	 domains.
This	 is	particularly	applicable	 to	 components	 for	which	you	 received	many
enhancement	requests	in	the	past	and	you	expect	that	to	continue.	If	you	think
not	only	 that	such	a	component’s	 implementation	can	be	simplified	using	a
new	language	or	capability	in	the	market	but	also	that	future	maintenance	and
updates	 would	 become	 easier,	 then	 now	 is	 the	 right	 time	 to	 address	 such
changes.	 In	 other	 cases,	 you	 may	 find	 another	 language	 provides	 easier
abstractions	for	concurrency	than	the	current	one	used.	You	can	leverage	the
new	language	for	a	given	microservice	while	 the	rest	of	 the	application	can
still	 be	 using	 a	 different	 language.	 Likewise,	 you	 may	 want	 some
microservices	to	be	extremely	fast	and	may	decide	to	write	them	in	C	to	get
the	maximum	gains	 rather	 than	writing	 in	another	high-level	 language.	The
bottom	line	is	to	take	advantage	of	this	flexibility.

•	 Storage	 alternatives	 or	 polyglot	 persistence.	 With	 the	 rise	 of	 big	 data,
some	 components	 of	 the	 application	 may	 provide	 value	 by	 using	 NoSQL
databases	 rather	 than	 relational	 databases.	 If	 any	 such	 component	 in	 the
application	may	 benefit	 from	 this	 alternative,	 then	 it	 may	 be	 right	 time	 to
make	the	switch	to	NoSQL.

•	These	 are	 the	 key	 aspects	 you	 should	 consider	 for	 each	 service	 or	 feature
within	your	monolithic	application,	and	you	need	to	prioritize	the	conversion
of	such	items	first.	Once	you	have	derived	the	value	from	high-priority	items,
you	can	then	apply	other	rules.

•	 Modification	 requests.	 One	 important	 thing	 to	 track	 in	 any	 software
lifecycle	is	the	new	enhancements	requests	or	changes.	Features	that	have	a
higher	number	of	change	requests	may	be	suitable	for	microservices	because
of	the	build	and	deployment	time.	Separating	such	services	reduces	the	build
and	deployment	time,	as	you	will	not	have	to	build	the	entire	application,	just
the	changed	microservice,	which	may	also	 increase	availability	 time	for	 the
rest	of	the	application.

•	 Deployment.	 There	 are	 always	 some	 parts	 of	 the	 application	 that	 add
deployment	 complexity.	 In	 a	 monolithic	 application,	 even	 if	 a	 particular
feature	 is	 untouched,	 you	 still	 must	 go	 through	 the	 complete	 build	 and
deployment	process.	If	such	cases	exist,	it	is	beneficial	to	cut	out	such	pieces
and	 replace	 them	 with	 microservices	 so	 your	 overall	 deployment	 time	 is
reduced	 for	 the	 rest	 of	 the	monolithic	 application.	We	 talk	more	 about	 this
after	we	learn	about	containers.

•	Helper	services.	 In	most	applications,	 the	core	or	main	service	depends	on
some	of	the	helper	services.	The	unavailability	of	such	helper	functions	may
impact	 the	 availability	 of	 the	 core	 service.	 For	 example,	 in	 our	 helpdesk
application,	discussed	in	Chapter	11,	ticketing	depends	on	the	product	catalog
service.	If	the	product	catalog	service	is	not	available,	the	user	will	be	unable
to	submit	a	ticket.	If	such	cases	exist,	helper	services	should	be	converted	to
microservices	 and	 appropriately	 made	 highly	 available	 so	 they	 can	 better
serve	core	services.	These	are	also	called	circuit-breaker	services.

Depending	on	the	application,	this	criteria	may	require	most	of	the	services	to
be	converted	to	microservices,	and	that	is	okay.	The	intention	here	is	to	simplify
the	conversion	process	so	that	you	can	prioritize	and	define	the	roadmap	for	your
migration	to	a	microservices-based	architecture.

Rearchitecting	the	Services
Once	you	have	identified	the	functions	to	be	migrated	as	microservices,	it’s	time
to	start	rearchitecting	the	selected	services	following	the	best	practices	from	the
earlier	scenario.	Here	are	the	aspects	to	keep	in	mind:

•	 Microservices	 definition.	 For	 each	 function,	 define	 the	 appropriate
microservices,	 which	 should	 include	 communication	 mechanism	 (API),
technology	 definition,	 and	 so	 on.	 Consider	 the	 data	 your	 existing	 function
uses,	or	create	and	plan	accordingly	the	data	strategy	for	microservices.	If	the
function	 was	 on	 heavy	 databases	 such	 as	 Oracle,	 would	 it	 make	 sense	 to
move	 to	 MySQL?	 Determine	 how	 you	 are	 going	 to	 manage	 the	 data
relationship.	Finally,	run	each	microservices	as	a	separate	application.

•	Refactor	code.	You	may	reuse	some	of	the	code	if	you	are	not	changing	the
programming	 language.	Think	 about	 the	 storage/database	 layer—shared	 vs.
dedicated,	 in-memory	 vs.	 external.	 The	 goal	 here	 is	 not	 to	 add	 new
functionality	unless	 required	but	 to	 repackage	 the	existing	code	and	expose
the	required	APIs.

•	Versioning.	 Before	 you	 begin	 coding,	 decide	 on	 the	 source	 control	 and
versioning	 mechanism,	 and	 make	 sure	 these	 standards	 are	 followed.	 Each
microservice	 is	 to	 be	 a	 separate	 project	 and	 deployed	 as	 a	 separate
application.

•	Data	migration.	 If	 you	 decide	 to	 create	 a	 new	database,	 you	will	 have	 to
migrate	the	legacy	data	also.	This	is	usually	handled	by	writing	simple	SQL
scripts	depending	on	your	source	and	destination.

•	Monolithic	code.	Initially,	leave	the	existing	code	in	place	in	the	monolithic
application	in	case	you	have	to	roll	back.	You	can	either	update	the	rest	of	the
code	to	use	the	new	microservices	or,	better,	split	your	application	traffic,	if
possible,	 to	 utilize	 both	 the	 monolithic	 and	 microservices	 version.	 This
provides	you	the	opportunity	to	 test	and	keep	an	eye	on	performance.	Once
confident,	you	can	move	all	the	traffic	to	microservices	and	disable/get	rid	of
old	code.

•	 Independent	 build,	 deploy,	 and	 manage.	 Build	 and	 deploy	 each
microservice	 independently.	As	you	 roll	out	new	versions	of	microservices,
you	can	again	split	the	traffic	between	the	old	and	the	new	version	for	some
time.	 This	 means	 that	 you	 may	 have	 two	 or	 more	 versions	 of	 the	 same
microservice	running	in	the	production	environment.	Some	of	the	user	traffic

can	be	routed	to	the	new	microservice	version	to	make	sure	the	service	works
and	 performs	 right.	 If	 the	 new	 version	 is	 not	 performing	 optimally	 or	 as
expected,	it	would	be	easy	to	roll	back	all	the	traffic	to	the	previous	version
and	send	the	new	version	back	to	development.	The	key	here	is	to	set	up	the
repeatable	 automated	 deployment	 process	 and	 move	 toward	 continuous
delivery.

•	Old	code	removal.	You	can	remove	your	temporary	code	and	delete	the	data
from	the	old	storage	location	only	after	you	have	verified	that	everything	is
migrated	correctly	and	operating	as	expected.	Be	sure	to	make	backups	along
the	way.

A	Hybrid	Approach
When	 writing	 a	 brand-new	 application,	 developers	 can	 directly	 follow	 the
microservices	 architecture	 principles	 and	 blueprint	 to	 build	 the	 software
application,	 as	 we	 have	 discussed.	 Developers	 sometimes	 follow	 a	 kind	 of
hybrid	approach	of	microservices	and	monolithic.	In	this	case,	they	can	develop
part	 of	 their	 application	 as	 microservices	 and	 the	 rest	 following	 standard
SOA/MVC	 practices	 based	 on	 certain	 criteria.	 The	 idea	 is	 that	 not	 all	 the
components	of	the	application	may	qualify	as	microservices.
As	we	 discussed	 in	Chapter	 3,	microservices	 offer	 lot	 of	 flexibility,	 but	 this

flexibility	comes	at	some	cost.	The	hybrid	approach	is	to	balance	the	flexibility
and	 cost	 aspects	 with	 the	 understanding	 that,	 over	 time,	 components	 can	 be
pulled	out	of	the	monolithic	part	and	converted	to	microservices	on	an	as-needed
basis.	 The	 key	 is	 to	 keep	 both	 approaches	 in	 mind,	 along	 with	 microservices
criteria,	during	this	transition.

PART	II

Containers

Chapter	5

Docker	Containers

This	 chapter	 covers	 another	 trending	 topic,	 Docker	 containers.	 As	 companies
expand,	 they	 experience	 growing	 pains	 due	 to	 software	 deployment	 and
scalability.	Over	 time,	with	more	 users	 and	 features,	 the	 software	 tends	 to	 get
complex,	 and	 then	 the	 real	 software	 deployment	 and	 scalability	 nightmares
begin.	 We	 discussed	 in	 Chapter	 1,	 “An	 Introduction	 to	 Microservices,”	 that
microservices	 can	 address	 the	 development	 challenge	 by	 simplifying	 the
architecture,	 but	 we	 also	 discussed	 that	 it	 pushes	 down	 the	 complexity	 of
operations,	which	includes	deployment	and	scalability.	Further	complicating	the
challenge	is	that,	with	microservices-based	architecture,	you	are	probably	going
to	 have	 thousands	 of	 services	 to	 host,	 deploy,	 and	 manage.	 That’s	 where
containers	come	in	to	address	most	of	our	issues.
Docker	is	an	open	source	technology	initiative	that	addresses	the	deployment

and	 scalability	 problems	 by	 separating	 applications	 from	 the	 infrastructure
dependencies.	 It	 addresses	 these	 problems	 with	 containers,	 which	 allow	 us	 to
package	 the	 application	 with	 all	 its	 dependencies,	 including	 the	 directory
structure,	metadata,	 processes	 space,	 sets	 of	 ports,	 and	 so	 on.	We	 can	 run	 the
packaged	 application	 the	 same	 way,	 always,	 across	 all	 machines	 and
environments.	 That’s	what	makes	Docker	 interesting	 and	 is	 the	 single	 biggest
factor	 in	 its	meteoric	 rise.	You	might	be	 thinking,	 that’s	what	virtual	machines
(VM)	 do.	 To	 understand	 the	 difference,	 let’s	 see	 how	 these	 technologies	 are
different.

Virtual	Machines
In	 its	 simplest	 form,	a	virtual	machine	 is	 a	 self-contained	 system	 that	 includes
everything	 from	 its	 own	 operating	 system	 (called	 guest	 OS)	 to	 an	 application
environment	 and	 the	 application	 itself.	 Multiple	 virtual	 machines	 per	 host	 or
physical	machine	can	be	installed	using	a	layer	called	a	hypervisor	on	top	of	the
host	machine	OS.	This	hypervisor,	also	called	type	2	hypervisor,	acts	as	a	proxy
for	hardware,	giving	the	impression	to	guest	OSs	that	they	are	running	on	 their
dedicated	hardware.	See	Figure	5.1.	The	type	1	hypervisor	directly	runs	on	top
of	 the	 hardware	 without	 a	 host	 OS	 in	 place	 and	 is	 considered	 a	 bare-metal

hypervisor.

Figure	 5.1	 Basic	 virtual	 machine	 architecture	 with	 hypervisor	 atop	 the	 host
operating	system	(type	2	hypervisor)

The	 VM	 concept	 gained	 lot	 of	 traction	 and	 created	 a	 multibillion-dollar
industry	 because	 it	 allowed	 organizations	 to	 utilize	 the	 available	 hardware
resources	 to	 the	 best	 extent	 possible.	 Before	 virtualization,	 companies	 used	 to
run	dedicated	servers	for	an	application.	Sharing	this	infrastructure	was	okay	in	a
development	 environment,	 but	 in	 production,	 all	 of	 the	 server	 resources	 were
dedicated	 to	 one	 application	 as	 a	 best	 practice.	 This	 resulted	 in	 a	 wastage	 of
resources	when	the	application	couldn’t	use	all	the	resources	at	all	times.	We	all
know	how	powerful	these	servers	and	machines	have	become	over	time.	Hence
virtualization	provided	this	huge	opportunity	to	utilize	the	server	resources	more
efficiently,	at	the	same	time	providing	the	application	segregation	such	that	each
application	can	run	on	its	own	OS	as	a	separate	virtual	machine.	This	model	has
been	 widely	 successful,	 and	 it’s	 actually	 how	 cloud	 originated—the	 rest	 is
history.	Virtual	machines	offered	many	advantages:

•	Efficiency.	A	virtual	machine	feels	and	works	like	a	separate	machine.	The
key	 advantage	 is	 efficient	 resource	 usage	 and	 isolation	 from	 a	 security
standpoint.

•	Flexibility.	Resources	 can	be	 allocated	 as	needed.	CPUs,	memory,	 and	 the
like	can	all	be	distributed	on	an	initial	requirements	basis	and	when	needed.
Further,	resource	allocation	can	auto-adjust	to	some	higher	rate.	This	concept
is	also	known	as	elasticity.

•	Backup	and	recovery.	Virtual	machines	can	be	 stored	as	a	 single	 file	 that
can	be	easily	backed	up	on	another	 source.	 If	 and	when	 required,	 it	 can	be
copied	back.

•	 OS	 freedom.	 Different	 guest	 OSs	 can	 exist	 on	 the	 same	 hypervisor.
Therefore,	you	can	support	multiple	applications	catering	to	their	specific	OS
needs.

•	Performance	and	moving.	 It	 is	very	easy	 to	move	a	virtual	machine	from
one	host	to	another	in	case	of	performance	degradation	on	the	host	machine.
Most	 hypervisors	 support	 this	 feature	 automatically.	 VMware,	 a	 very
successful	 virtualization	 software,	 provides	 this	 capability	 with	 a	 feature
called	 VMotion,	 which	 enables	 the	 live	 migration	 of	 a	 running	 virtual
machine	from	one	host	to	another.

There	 are	 many	 other	 advantages,	 such	 as	 cost	 saving,	 but	 this	 discussion
covers	the	key	ones.
Why	 use	 containers?	 To	 answer	 that	 question,	 we	 need	 to	 also	 understand

some	of	 the	 issues	with	virtual	machines.	 If	you	 look	again	at	Figure	5.1,	you
can	likely	point	out	the	issues.	We	have	a	machine	with	a	host	OS.	Then	we	have
a	hypervisor	and	an	extra	OS	per	virtual	machine.	We	all	know	an	OS	is	bulky	in
terms	 of	 resource	 consumption	 and	 size.	 First,	 it	 consumes	 a	 good	 chunk	 of
storage	and	requires	a	lot	of	processing	power.	Second,	when	we	take	a	backup
of	a	virtual	machine,	even	though	it	is	mostly	a	single	file,	it	is	very	big	because
it	 contains	 an	 OS	 (Window,	 Linux,	 etc.),	 the	 installed	 application	 with	 the
dependencies,	and	its	local	data.	Some	VM	backups	may	run	more	than	20GB.
This	results	in	a	few	challenges:

•	Sharing	virtual	machines.	Moving	 and	 sharing	 virtual	machines	 across	 a
WAN	takes	lot	of	time	due	to	sheer	size.

•	Portability.	When	 a	 coder	 ships	 a	 virtual	machine	 to	 a	 fellow	 coder,	 over
time	changes	will	likely	be	made	to	the	application,	databases,	environment,
and	so	on.	The	coder	will	have	to	ship	the	whole	VM	file	again,	and	there	is
no	way	for	him	to	do	a	diff	between	two	VM	files.	Similar	issues	occur	when
we	go	from	development	to	test	to	production	environments.	Either	the	code

needs	to	be	recompiled	on	every	virtual	machine,	or	we	need	to	transfer	the
complete	environment.

•	Performance	overhead.	The	whole	concept	of	an	application	 talking	to	 its
guest	OS,	which	 in	 turns	 talks	 to	a	hypervisor,	which	 then	 talks	 to	 the	host
OS	that	controls	hardware	to	get	the	request	fulfilled,	is	inefficient	in	the	case
of	a	 type	2	hypervisor.	You	can	sense	some	performance	 issues	here	due	 to
extra	 layers.	 In	 the	 case	 of	 type	 1	 hypervisors,	 the	 hypervisors	 are	 directly
installed	on	the	hardware,	so	the	extra	overhead	of	the	hypervisor	interacting
with	 the	host	OS	goes	away.	However,	 the	rest	of	 the	overheads	previously
listed	still	exist.

•	 Efficient	 resource	 utilization.	 Resource	 usage	 on	 a	 virtual	 machine	 is
certainly	better	than	running	applications	on	physical	machines	with	a	single
OS,	which	 leaves	 the	 resources	 idle	when	an	application	 is	 lightly	used.	At
same	 time,	 virtualization	 isn’t	 perfect,	 either,	 because	 of	 the	 replicating	 of
multiple	OSs	with	a	hypervisor.

These	 are	 the	 challenges	 with	 virtualization,	 and	 the	 good	 news	 is	 that
containers	address	all	of	these	issues	and	more.	Let’s	get	right	into	containers.

Containers
Containers	 also	 provide	 a	 virtual	 environment	 that	 packages	 the	 application
processes,	 metadata,	 and	 file	 system—everything	 that	 is	 required	 by	 an
application	 to	 run.	But	unlike	virtual	machines,	 containers	do	not	 require	 their
own	OSs.	 Instead,	 they	are	 just	wrappers	 around	a	UNIX	process	 that	 directly
talks	to	the	kernel	to	request	and	use	the	resources.	Check	out	Figure	5.2.

Figure	 5.2	 Basic	 container	 architecture.	 Dependencies:	 directory	 structure,
libraries,	process	space,	and	so	on

As	you	can	see,	containers	clearly	provide	the	application	and	process	isolation
where	 one	 application	 is	 completely	 unaware	 of	 the	 existence	 of	 another
application.	But	all	the	processes	run	on	and	share	the	same	kernel	used	by	OS.
How	does	 this	happen?	Containers	use	resource	 isolation	features	of	 the	Linux
kernel,	such	as	control	groups	and	namespaces,	 to	allow	independent	processes
to	 run	within	a	 single	Linux	 instance.	This	 goes	back	 to	why	 each	 application
does	 not	 have	 its	 own	OS,	 as	VMs	do.	This	 also	means	 that	 virtual	machines
provide	 better	 isolation	 than	 containers	 provide.	 However,	 that’s	 what	 makes
containers	 very	 lightweight,	 making	 them	 easy	 to	 ship	 and	 move	 around.
Because	of	this	lightweight	nature	of	containers,	you	can	run	more	containers	on
a	given	 hardware	 combination	 than	 if	 you	were	 to	 run	VMs.	With	 containers,
you	use	your	hardware	resources	much	more	efficiently.
These	containers	are	also	known	as	Linux	containers	or	LXCs.	The	containers

concept	 has	 been	 around	 forever	 but	 has	 only	 recently	 gained	 significant
popularity	due	to	Docker.	As	we	discussed,	Docker	is	an	open	source	initiative
that	 introduced	 several	 changes	 to	Linux-based	 containers	 to	make	 them	more
portable,	easy	to	use,	and	flexible.	It	did	that	by	implementing	set	of	utilities	that
enable	 the	 containers	 portability	 and	 flexibility.	 These	 utilities	 allow	 you	 to

easily	create,	ship,	copy,	and	run	containers.	Using	Docker	containers,	you	can
overcome	most	of	the	disadvantages	of	using	VMs.
There	are	some	subtle	differences	between	Linux	and	Docker	containers:

•	Processes.	Within	 LXC,	 you	 can	 run	multiple	 processes,	 whereas	 Docker
containers	 are	 restricted	 to	 run	 as	 a	 single	 process.	 If	 your	 application
consists	of	multiple	processes,	then	you	must	run	an	equal	number	of	Docker
containers.	Although	it	creates	a	containers	management	problem,	it	provides
immense	flexibility	to	the	application	system.	Since	there	is	one	container	per
process,	 you	 can	manage	 and	 change	 behavior	 at	 a	 granular/process	 level.
This	is	a	key	advantage	and	represents	the	solution	that	was	most	needed	for
microservices:	a	self-contained	service	with	one	process.

•	Persistent	storage.	Docker	 containers	 are	 stateless,	 as	 they	do	not	 support
persistence	 storage.	 You	 must	 attach	 an	 external	 storage	 by	 mounting	 the
storage	as	a	Docker	volume.

•	Portability.	Docker	provides	more	portability	 than	does	LXC,	which	 is	 the
reason	 Docker	 become	 very	 popular.	 With	 LXC,	 the	 portability	 is	 not
guaranteed;	 that	 is,	 when	 you	 move	 an	 LXC	 container	 from	 one	 host	 to
another,	 it	 may	 not	 run	 smoothly	 due	 to	 different	 server	 configuration.
Docker,	by	contrast,	guarantees	that	portability	will	not	be	an	issue	because	it
abstracts	the	OS,	networking,	and	storage	details	from	the	application	better
than	LXC	does.	So,	when	a	developer	is	done	with	development	and	testing,
he	or	she	can	create	an	image,	which	can	be	downloaded	on	production	and	is
guaranteed	to	work	on	the	production.	This	is	a	key	complexity	that	Docker
containers	address,	making	engineers’	lives	a	little	easier.

Docker	Architecture	and	Components
Docker	uses	a	client–server	architecture	whereby	the	client	 talks	 to	 the	Docker
daemon,	which	mainly	 provides	 all	 the	 services.	 Let’s	 review	 the	 components
that	 provide	 the	 workflow	 and	 toolsets	 to	 manage	 and	 deploy	 the	 containers,
completing	the	Docker	ecosystem:

•	Docker	server	or	daemon.	This	resides	on	the	host	system	and	manages	all
the	containers	running	on	the	host	machine.

•	Docker	 container.	 This	 is	 a	 standalone	 virtual	 system	 that	 contains	 the
running	process,	all	the	files,	dependencies,	process	space,	and	ports	that	are
required	 to	 run	 the	 application.	 Since	 every	 container	 has	 all	 the	 ports

available,	we	do	 the	mapping	at	 the	Docker	 level.	We	 talk	more	 about	 this
later.

•	Docker	 client.	 A	 user	 interface	 or	 a	 command-line	 interface	 is	 used	 to
communicate	with	the	Docker	daemon.

•	Docker	images.	These	are	read-only	template	files	of	a	Docker	container	that
you	can	move	around	and	distribute.	Unlike	with	virtual	machines,	these	files
can	be	version	controlled.	Not	only	that,	you	can	run	docker	diff	 to	see
changes	 between	 two	 images.	 Each	 image	 consists	 of	 multiple	 layers	 that
may	 be	 shared	 across	 images.	 Suppose	 you	 have	 to	 upgrade	 the	 existing
application.	The	update	will	create	a	new	layer	on	top	of	the	existing	image.
This	means	you	can	ship	and	deploy	 just	 the	new	layer,	making	 the	overall
process	lighter	and	faster,	and	that’s	what	makes	containers	lightweight.

•	 Docker	 registry.	 This	 is	 a	 repository	 for	 sharing	 and	 storing	 Docker
container	 images.	A	well-known	 registry	 is	Docker	Hub	 (just	 like	GitHub)
that	 allows	you	 to	pull	or	push	 the	container	 images	with	public	 or	 private
access.	You	can	have	your	own	private	registry	within	your	organization.

•	 Dockerfile.	 This	 is	 a	 very	 simple	 text	 file	 where	 you	 can	 specify	 the
commands	 to	 build	Docker	 images.	 It	 allows	 you	 to	 set	 up	 instructions	 to
install	 software;	 set	 up	 environment	 variables,	 working	 directories,	 and
ENTRYPOINT;	and	add	new	code	using	Docker	commands.	This	result	in	a
customized	 software.	We	 review	Docker	 commands	 in	Chapter	 7,	 “Docker
Interface.”

•	Docker	Machine.	Docker	Machine	allows	you	spin	up	Docker	hosts	on	your
local	machine	 or	within	 your	 public	 or	 private	 cloud,	 including	 on	 various
service	 providers	 such	 as	Amazon	 and	Microsoft	Azure.	 It	 also	 provides	 a
way	 to	 manage	 the	 hosts	 through	 Docker	 Machine	 commands—start,
stop,	 inspect,	 and	 more.	 For	 the	 latest	 information,	 refer	 to	 Docker
online	documentation.

•	 Docker	 Swarm.	 Swarm	 provides	 out-of-the-box	 clustering	 capability
wherein	a	pool	of	Docker	nodes	act	as	one	large	Docker	host.	It	is	a	separate
tool,	which	 you	 can	 install	 using	Docker	Machine	or,	manually,	 by	pulling
the	 Swarm	 image.	 At	 the	 time	 of	 writing,	 it	 is	 being	 integrated	 into	 the
Docker	 Engine.	 The	 setup	 process	 is	 pretty	 straightforward:	 configure	 the
Swarm	manager	on	all	the	nodes,	and	you	have	it.	The	beauty	is	that	we	can
just	tell	Swarm	to	start	our	containers,	and	it	will	decide	which	node	to	start
them	on,	 thus	 hiding	 all	 the	 complexity.	 In	 order	 to	 dynamically	 configure

and	manage	 the	 services	 in	 the	 container,	 you	use	 a	discovery	 service.	The
integrated	 option	 is	 called	 Swarm	mode,	 and	 it	 works	 same	 as	 the	 Swarm
tool.	It	also	supports	load	balancing	and	service	discovery	and	hence	acts	as	a
full-fledged	orchestration	engine.	To	enable	Swarm	mode,	you	use	the	simple
init	command	and	add	workers	using	the	join	command.	We	learn	more
about	Docker	Swarm	later	in	the	book.

•	 Docker	 Compose.	 An	 application	 will	 have	 multiple	 components	 and
consequently	 will	 be	 running	 multiple	 containers.	 Docker	 provides	 the
Compose	 tool,	 which	 allows	 you	 to	 define	 and	 run	 multiple	 container
applications.	 You	 can	 define	 the	 application	 environment	 in	 a	 single
Dockerfile	 and	 the	 services	 in	 the	 docker-compose.yml	 file,	 which	 will
automatically	 spin	 up	 the	 required	 containers	 per	 the	 instructions	 in	 these
files.	Like	Docker	Machine,	Compose	provides	commands	for	managing	the
application	services	with	a	single	command.

Figure	 5.3	 shows	 how	 everything	 fits	 together	 from	 a	 logical	 architecture
perspective.

Figure	5.3	Docker	architecture:	how	it	all	fits	together

In	upcoming	chapters,	we	present	a	detailed	example	of	pulling	and	standing

up	a	Docker	container.	But	first	we	go	through	the	Docker	installation	(Chapter
6)	and	commands	(Chapter	7).	The	key	point	for	now	is	that	Docker	containers
provide	a	virtual	environment,	and	the	rest	of	the	components	are	the	toolsets	to
manage	and	operationalize	these	containers.
So	what	are	the	advantages	of	using	Docker	technology?	It	not	only	addresses

many	 of	 the	 issues	 encountered	 with	 virtual	 machines	 but	 also	 provides	 VM
benefits	and	other	advantages	that	make	it	a	perfect	fit	for	DevOps:

•	Lightweight.	Docker	containers	do	not	have	 their	own	OS,	 so	 their	 size	 is
reduced.	Also,	containers	can	be	stored	as	images,	which	are	simple	files	that
can	be	version	controlled	and	distributed	easily.

•	 Portable.	 A	 Docker	 container	 is	 the	 sum	 of	 an	 application	 and	 all	 its
dependencies	bundled	 together	 independently	of	 the	deployment	model,	OS
version,	 and	 so	on.	This	 container	 can	be	easily	 transferred	 to	 another	host
machine	in	the	form	of	an	image	and	run	without	any	issues.	You	can	build	it
once	and	run	it	everywhere.

•	Reuse.	Docker	images	are	simply	a	set	of	layers,	and	successive	commands
create	new	layers	of	images	to	create	a	final	image.	Once	an	image	is	built,
Docker	 reuses	 it	 for	new	builds,	which	makes	 the	builds	 faster	 and	 images
smaller,	since	it	reuses	or	shares	these	images.	For	example,	we	may	have	an
image	with,	say,	file	1	on	top	of	an	Apache	web	server	 running	on	Ubuntu.
Suppose	 we	 need	 another	 image	 with	 file	 2	 on	 top	 of	 Apache	web	 server
running	on	Ubuntu.	Since	we	already	have	the	first	image,	Docker	will	reuse
all	the	layers	of	first	image	except	the	file	1	layer	to	create	a	second	image.
That	means	both	final	images	will	share	the	Ubuntu	and	Apache	layers,	and
each	image	will	have	a	file	layer	of	its	own,	which	will	be	the	only	difference
between	these	two	images.

•	 Fast	 deployment.	 Docker	 containers	 are	 fully	 self-sufficient,	 lightweight
packages	 that	 are	 easy	 to	 distribute	 and	 are	 completely	 tested	 during	 the
testing	cycle.	The	same	container	can	be	deployed	in	production	with	no	or
very	 minimal	 changes,	 hence	 expediting	 the	 deployment	 and	 reducing	 the
rollbacks	 due	 to	 environment	 dependencies.	 This	 feature	 is	 also	 key	 for
continuous	development.

•	Efficient	use	of	resources.	Like	virtual	machines,	Docker	uses	the	resources
efficiently,	 perhaps	 better	 than	 virtual	machines	 do,	 because	 of	 the	Docker
containers’	lighter	weight.	At	the	same	time,	it	provides	acceptable	isolation.
Because	of	their	size,	a	higher	number	of	containers	can	be	installed	on	a	host

machine	compared	 to	 the	number	of	virtual	machines	 installed	on	 the	same
host.

In	many	cases,	Docker	containers	are	preferable	to	virtual	machines,	but	let’s
be	very	 clear:	Docker	 is	 not	 going	 to	 replace	virtual	machines.	 In	 fact,	 typical
deployments	have	been	 taking	advantage	of	 the	power	of	both	 technologies	by
running	 Docker	 inside	 virtual	 machines,	 making	 the	 use	 of	 resources	 very
efficient.

The	Power	of	Docker:	A	Simple	Example
By	now,	you	probably	understand	the	power	of	Docker	at	a	theoretical	level.	You
will	 learn	 a	 lot	more	 in	 upcoming	 chapters,	 but	 let’s	 discuss	 a	 small	 Docker-
based	deployment	and	the	value	it	offers.
Assume	you	have	to	set	up	a	basic	WordPress	site	that	has	three	parts:	a	web

server	 with	 all	 your	 WordPress	 applications,	 a	 relational	 database	 such	 as
MySQL,	and	storage	 to	store	 this	data.	 In	a	VM	world,	you	can	have	all	 these
parts	on	one	or	more	virtual	machines.	You	need	to	create	a	VM	using	your	VM
manager	and	then	install	the	OS-specific	software	(MySQL,	WordPress)	on	each
virtual	machine.	A	typical	deployment	may	look	like	Figure	5.4.

Figure	5.4	Typical	virtual	machine	deployment

Let’s	 deploy	 the	 same	 configuration	 using	Docker,	 keeping	microservices	 in
mind.	Remember	what	we	discussed	earlier:	this	will	provide	us	independent	and
standalone	 capability	 as	 an	 executable/process	 that	 communicates	 with	 other
services	or	programs	through	standard	interprocess	communication.
Similarly,	we	discussed	that	each	Docker	container	runs	just	one	process.	You

make	 the	 containers	 work	 together	 by	 using	 link	 options—that’s	 what	 brings
them	together.	In	this	example,	we	need	to	create	three	containers:

Step	 1:	Data	 container.	You	 can	 easily	 pull	 an	 existing	 basic	 Linux	 image
such	as	Ubuntu	from	the	Docker	Hub	and	run	it.	This	way,	you	can	create	the
local	storage,	which	is	equivalent	 to	creating	a	directory	structure	where	you
want	to	store	the	data.	You	also	have	ability	to	allocate	memory,	storage,	and
CPU.	Following	is	the	command:
Click	here	to	view	code	image

docker	create	–-name	mysql_data_container	–v	/var/lib/mysql	ubuntu

Step	2:	MySQL	container.	Similarly,	you	can	pull	the	latest	MySQL	version
image	 from	 the	Docker	Hub	 and	 run	 it	 on	 your	 local	 host.	 In	 the	 same	 run
command,	you	can	map	the	volume	created	in	the	previous	step.	In	less	than	2
minutes,	your	database	is	up	and	running.	Following	is	the	command:
Click	here	to	view	code	image

docker	run	––volumes-from	mysql_data_container	–v	/var/
lib/mysql:/var/lib/mysql	-e
MYSQL_USER=mysql	-e		MYSQL_PASSWORD=mysql	-e	MYSQL_DATABASE=test	-e
MYSQL_ROOT_PASSWORD=test	-it	-p	3306:3306	-d	mysql

Step	3:	WordPress	container.	Just	as	we	did	in	the	previous	step,	we	can	pull
and	 run	 the	 latest	 image	of	WordPress.	 In	 the	 same	run	 command,	we	 can
link	the	MySQL	database	we	created	in	the	previous	step:
Click	here	to	view	code	image

docker	run	–d	–-name	wordpress	––link	mysql:mysql	wordpress

You	are	all	set	up	with	a	personal	WordPress	site	in	less	than	10	minutes.	See
Figure	5.5.

Figure	5.5	How	just	three	containers	can	help	create	a	WordPress	site

You	 can	 see	 from	Figures	 5.4	 and	5.5	 how	 lightweight	 containers	 are—they
don’t	 need	 their	 own	 OSs.	 Not	 only	 that,	 their	 lightweight	 simplifies
maintenance	and	scaling	aspects:

•	 Very	 simple	 upgrade	 process.	 Say	 you	 want	 to	 upgrade	 the	 image	 of
MySQL.	All	you	need	is	to	stop	the	MySQL	container	you	started	in	step	2.
Pull	the	latest	version	of	MySQL	image	and	run	it	along	with	the	mapping	to
the	same	volume.

•	Reuse.	Say	you	want	 to	customize	a	version	of	WordPress	for	your	special
team.	 You	 can	 pull	 another	 WordPress	 image	 and	 run	 another	 Docker
container	and	link	to	the	same	database.

•	 Simple,	 straightforward	 clustering.	 Docker	 provides	 native	 clustering
called	Swarm	mode.	Using	 just	 a	 few	commands,	 you	 can	 create	 a	 cluster,
load	 balance,	 and	 discover	 your	 services.	 We	 learn	 more	 about	 this	 in
upcoming	chapters.

Welcome	 to	 the	world	of	containers.	A	 lot	 is	happening	 is	 this	 field,	 and	 the
Docker	 community	 is	 moving	 very	 fast	 on	 a	 daily	 basis	 to	 introduce	 new
capabilities.	 Also,	 lots	 of	 startup	 companies	 are	 trying	 to	 address	 some

challenges	 and	 add	more	 automations.	While	 we	 cover	 a	 lot	more	 on	Docker
containers	 in	 upcoming	 chapters,	 you	 should	 bookmark	 Docker’s	 community
page,	https://www.docker.com/docker-community,	to	stay	up	to	date.

https://www.docker.com/docker-community

Chapter	6

Docker	Installation

Until	a	year	or	so,	it	was	a	pain	to	install	Docker,	but	now	it’s	a	piece	of	cake.
Docker	is	based	on	Linux	technology,	which	is	good	news,	as	most	of	the	Linux
major	distributions	such	as	Centos,	Ubuntu,	and	Amazon	Linux	support	Docker.
In	 this	 chapter,	 we	 cover	 installation	 on	Mac	OS	X,	Windows,	 and	 Ubuntu

Linux.

Installing	Docker	on	Mac	OS	X
These	installation	instructions	assume	your	Mac	is	from	2010	or	later,	with	OS
X	10.11	or	later.	To	verify,	click	the	Apple	icon	and	select	About	This	Mac.	We
will	download	and	work	with	Docker	release	17.03.0:.	This	is	the	latest	release
at	the	time	of	writing	this	book.

1.	Enter	the	following	URL	in	your	browser:	https://docs.Docker.com/Docker-
for-mac/install/#download-Docker-for-mac.	 Click	 Get	 Docker	 for	 Mac
(Stable)	to	start	downloading	the	Docker	toolbox	in	your	Downloads	folder.

2.	Double-click	 the	package	 to	open	 it.	You	should	 see	 the	pop-up	shown	 in
Figure	6.1.

https://docs.Docker.com/Docker-for-mac/install/#download-Docker-for-mac

Figure	6.1	Drag	and	drop

3.	Drag	the	Docker	whale	icon	into	your	Applications	folder	to	download	the
Docker	application	to	your	machine,	as	shown	in	Figure	6.2.

Figure	6.2	Applications	folder	with	Docker	added

4.	Double-click	 the	Docker	 application	 and	 click	Open.	 It	will	 give	 you	 the
screen	shown	in	Figure	6.3;	click	OK.

Figure	6.3	Allow	access

5.	You	will	see	another	pop-up	asking	for	your	Mac	OX	password.	Enter	your
password.

6.	 If	 you	have	 installed	Docker	 toolbox	 in	 the	past,	 you	will	 see	 the	pop-up
shown	 in	 Figure	 6.4	 giving	 you	 the	 option	 to	 copy	 your	 existing	 Docker
images	 and	 containers.	 Select	 Copy	 if	 you	 want	 to	 copy	 over	 existing
images;	 otherwise,	 select	No.	 If	 it	 is	 a	 fresh	 install,	 you	 will	 not	 see	 this
screen.

Figure	6.4	Pop-up	shown	if	you	have	installed	Docker	toolbox	in	the	past

7.	This	will	start	the	installation	process;	when	complete,	your	Docker	engine
will	start,	as	shown	in	Figure	6.5.

Figure	6.5	Result	when	installation	is	complete

That’s	it—your	installation	of	the	Docker	is	complete.
Once	the	environment	is	up,	it	gives	you	an	opportunity	to	register	on	Docker

Hub.	Recall	that	Docker	Hub	is	the	cloud-based	registry	service	for	storing	and
distributing	 Docker	 images.	 It	 has	 public	 space	 where	 you	 can	 share	 your
Docker	 images,	 and	 they	will	 be	 available	 for	 anyone	 to	 access.	You	 can	 also
purchase	a	private	option	to	limit	access	to	only	your	team.
If	you	are	already	registered,	enter	your	username	and	password	 (or	you	can

skip	it	for	now).	Upon	signing	in,	you	are	 taken	to	 the	Docker	Hub	where	you

can	explore	all	 the	 publicly	 available	Docker	 images	 or	 you	 can	 start	 creating
Docker	images,	as	shown	in	Figure	6.6.

Figure	6.6	Docker	Hub	homepage

We	 learn	 all	 about	Docker	 commands	 in	 the	 next	 chapter,	 but	 let’s	 try	 some
basic	ones	now.	First,	let’s	verify	the	Docker	version	we	installed	and	play	with
Docker	Terminal.
Open	 a	 terminal	 window	 on	 your	 Mac.	 Execute	 docker	--version	 to

confirm	 the	 version	 of	Docker	 installed	 on	 your	machine,	 as	 shown	 in	 Figure
6.7.

Figure	6.7	Docker	version	confirmation

You	 are	 all	 set	with	Docker	 version	 17.03.0.	 To	 list	 the	 commands,	 execute
docker	--help.	You	should	see	all	the	commands	available	to	you,	as	shown
in	Figure	6.8.

Figure	6.8	Docker	commands	available	to	you

Installing	Docker	on	Windows
These	installation	instructions	assume	you	are	working	on	a	64-bit	Windows	10
Pro	Enterprise	or	Education	edition.	The	Hyper-V	package	must	also	be	enabled

to	 properly	 install	 Docker.	 If	 it	 is	 not,	 refer	 to	 Docker	 Help
(https://docs.Docker.com/Docker-for-windows/install/#download-Docker-for-
windows)	before	proceeding.	We	will	download	and	work	with	Docker	version
17.03.0,	the	latest	release	at	the	time	of	writing:

1.	Enter	 the	following	URL	in	your	browser:	https://docs.docker.com/docker-
for-windows/install/#download-docker-for-windows.	Click	Get	Docker	 for
Windows	 (Stable).	 This	 should	 start	 downloading	 the	 Docker	 toolbox	 in
your	Downloads	folder.

2.	 Double-click	 on	 the	 package	 to	 open	 it.	 You	 should	 see	 the	 license
agreement	screen,	shown	in	Figure	6.9.

Figure	6.9	Docker	license	agreement

3.	Accept	the	terms	and	conditions	by	checking	the	checkbox	at	the	bottom	of
the	 screen,	 and	 then	 click	 Install	 to	 install	 Docker	 on	 your	 Windows
machine.

4.	After	 it	 installs,	you	should	see	a	small	“Docker	 is	starting”	pop-up	at	 the
bottom	right	of	the	screen.	Once	it	starts,	you	will	see	the	pop-up	shown	in
Figure	6.10,	and	you’re	all	set!

https://docs.Docker.com/Docker-for-windows/install/#download-Docker-for-windows
https://docs.docker.com/docker-for-windows/install/#download-docker-for-windows

Figure	6.10	Post-installation	pop-up

That’s	it—your	installation	of	the	Docker	tools	is	complete.
We	will	learn	Docker	commands	in	the	next	chapter,	but	let’s	use	some	basic

ones.	 Let’s	 verify	 the	 Docker	 version	 we	 installed	 and	 play	 with	 Docker
Terminal.
Open	 a	 terminal	 window.	 Execute	 docker	 --version	 to	 confirm	 the

version	of	Docker	installed	on	your	machine,	as	shown	in	Figure	6.11.

Figure	6.11	Docker	version	confirmation

You	are	all	set	with	Docker	version	17.03.0
To	 list	 the	 commands,	 execute	 docker	 --help.	 You	 should	 see	 all	 the

commands	available	to	you,	similar	to	what	was	shown	earlier	in	Figure	6.11.

Installing	Docker	on	Ubuntu	Linux
We	will	download	and	work	with	Docker	version	17.2.3,	the	latest	release	at	the
time	 of	 writing.	 For	 up-to-date	 information	 on	 the	 most	 recent	 release,	 see
https://docs.Docker.com/engine/installation/linux/ubuntu/#install-using-the-
repository.	Also	refer	to	this	URL	if	you	are	working	with	a	different	flavor	of
Linux.
These	 installation	 instructions	 assume	 your	 Ubuntu	 installation	 is	 a	 64-bit

version	and	one	of	the	following	versions:

•	Trusty	14.04

•	Yakkety	16.10

•	Xenial	16.04

You	 can	 check	 the	 version	 by	 executing	 the	 following	 command,	 as	 shown
Figure	6.12:

$	lsb_release	–a

https://docs.Docker.com/engine/installation/linux/ubuntu/#install-using-the-repository

Figure	6.12	Ubuntu	version	check

The	steps	also	assume	it	is	a	fresh	install	of	Docker	on	your	Linux	box.	While
we	 have	 used	 Trusty	 14.04,	 these	 instructions	 are	 applicable	 to	 the	 other	 two
versions	as	well.
If	you	are	working	with	Trusty	14.04,	it	is	recommended	that	you	install	linux-

image-extra	-*	packages	if	they	are	not	already	installed.	These	packages	allow
Docker	 to	use	 the	AUFS	storage	drivers.	AUFS	 is	 the	default	 storage	backend
for	Docker	installed	on	Ubuntu.	(Device	Mapper	is	the	default	on	other	flavors.)
To	install	the	packages,	run	the	following	command:

$	sudo	apt-get	update

Figure	6.13	Installing	additional	packages

The	preceding	command	pulls	all	the	latest	packages,	as	shown	in	Figure	6.13,
and	now	you	are	ready	to	install	these	updates.	Execute	the	following	command:
Click	here	to	view	code	image

$	sudo	apt-get	install	\
				linux-image-extra-$(uname	-r)	\
				linux-image-extra-virtual

This	 command	 installs	 the	updates,	 and	now	you	can	 install	Docker	on	your
Linux	 system.	 There	 are	 two	 different	 editions	 available:	 Docker	 CE
(Community	Edition)	 and	Docker	EE	 (Enterprise	 Edition).	We	will	work	with
CE	edition:

1.	You	need	to	install	the	Docker	repository,	from	which	you	can	then	pull	the
Docker	install.	Install	the	package	by	executing	this	command	to	allow	apt-
get	to	use	the	repository	over	HTTPS:
Click	here	to	view	code	image

$	sudo	apt-get	install	\
		apt-transport-https	\

		ca-certificates	\
		curl	\	software-properties-common

2.	Add	the	GPG	key	for	the	official	Docker	repository	to	the	system:
Click	here	to	view	code	image

$	curl	-fsSL	https://download.Docker.com/linux/ubuntu/gpg	|	sudo	apt-key	add

3.	 Validate	 that	 the	 key	 fingerprint	 is	 9DC8	 5822	 9FC7	DD38	 854A	 E2D8
8D81	803C	0EBF	CD88	(see	Figure	6.14):
Click	here	to	view	code	image

$	sudo	apt-key	fingerprint	0EBFCD88

Figure	6.14	Key	fingerprint	validation

4.	Add	the	Docker	repository	to	APT	(Advanced	Packaging	Tool)	sources:
Click	here	to	view	code	image

$	sudo	add-apt-repository	"deb	[arch=amd64]	<-DOCKER-EE-URL>	\
					$(lsb_release	-cs)	\	stable-"

5.	Update	the	package	index	with	the	Docker	packages	from	the	newly	added
repository:
$	sudo	apt-get	update

6.	Install	the	latest	version	of	Docker	(see	Figure	6.15):
$	sudo	apt-get	install	Docker-ce

https://download.Docker.com/linux/ubuntu/gpg

Figure	6.15	Latest	version	of	Docker	being	installed

7.	Confirm	the	version,	as	shown	in	Figure	6.16:
$	Docker	–-version

Figure	6.16	Docker	installation	confirmation

That’s	it—your	installation	of	Docker	on	Ubuntu	Linux	is	complete.

Chapter	7

Docker	Interface

In	Chapter	5,	“Docker	Containers,”	we	talked	about	Dockerfile,	which	contains	a
set	of	 commands	 that	 are	 executed	by	 the	Docker	daemon.	 In	 this	 chapter,	we
cover	 the	most	commonly	used	commands.	Then	we	create	a	Dockerfile	using
the	commands	and	execute	the	file	to	review	results.

Key	Docker	Commands
You	 can	 think	 of	 the	 following	 compendium	 of	 commands	 as	 the	 proverbial
bible	that	must	be	mastered	to	work	successfully	with	Docker—everything	from
searching	and	building	images	to	creating	your	own	Dockerfile.	We	review	the
simpler	 commands	 first	 and	 then	build	 on	 them	 to	 get	 to	 some	more	 involved
ones.

Docker	Search
The	 docker	 search	 command	 can	 be	 run	 on	 Docker	 CLI	 to	 search	 the
available	images	in	the	Docker	registry:

docker	search	[options]	term

The	GUI-based	client	also	provides	the	search	capability.
In	 the	 example	 shown	 in	Figure	7.1,	docker	search	mysql	 returns	 all

the	 images	 that	 have	 “mysql”	 in	 the	 name	 of	 the	 image.	 As	 you	 can	 see,	 it
returns	 the	 top	 25	 results.	 The	 GUI-based	 search	 provides	 similar	 results,	 as
shown	in	Figure	7.2.

Figure	7.1	Docker	search	results	for	“mysql”

Figure	7.2	GUI-based	search	results	for	“mysql”

Although	some	of	 the	 results,	 such	as	dockerizedrupal,	 are	unique,	many	are
duplicates	because	they’ve	been	uploaded	by	different	users	who	have	used	them
for	 custom	 purposes	 or	 made	 integrations.	 Using	 the	 -s	 option,	 the	 search
produces	only	the	widely	used	files	based	on	feedback	from	other	users:

docker	search	–s	50	mysql

This	 command	 returns	 all	 the	 images	 that	 have	 “mysql”	 in	 the	 name	 of	 the
image	and	at	least	50	stars	in	feedback,	as	shown	in	Figure	7.3.

Figure	7.3	Search	results	with	“mysql”	in	the	name	of	the	image	and	at	least	50
stars	in	feedback

In	this	case,	only	two	entries	are	listed,	as	they	are	the	only	two	with	more	than
50	ratings.

Note
Docker	has	been	evolving	at	a	tremendous	pace,	so	commands,	options,	and
even	 features	 and	 functionality	 change	 frequently	 across	 releases.	 For
example,	as	this	book	was	written,	the	-s	in	search	was	deprecated;	a	flag
called	 --filter	 must	 be	 used	 instead.	 With	 the	 filter	 option,	 the
command	 to	 list	 all	 the	 MySQL	 images	 with	 star	 ratings	 of	 50	 or	 more
would	be

						docker	search	--filter	stars=50	mysql

Docker	Pull
The	docker	pull	command	downloads	the	requested	image	from	the	Docker
registry	to	our	local	machine:

docker	pull	image:tag

For	example,	docker	pull	MySQL,	shown	in	Figure	7.4,	pulls	the	MySQL
image	from	the	registry.	Unless	a	tag,	such	as	version,	is	specified,	this	command
appends	 the	 “latest”	 tag	 by	 default	 instead	 of	 pulling	 all	 the	MySQL	 images
available.	The	command	is	equivalent	to

docker	pull	MySQL:latest

Figure	7.4	The	docker	pull	command	pulling	latest	MySQL	image	from	the
registry

Docker	Images
The	docker	images	command	returns	 the	 list	of	available	 top-level	 images
on	our	local	machine:

docker	images[options]

For	 example,	 docker	 images	 -a	 displays	 a	 list	 of	 all	 the	 top-level
images,	along	with	their	repository,	tag,	create	date,	and	virtual	size,	as	shown	in
Figure	7.5.	It	does	not	show	the	intermediate	layers’	images.

Figure	 7.5	 The	 docker	 images	 command	 displaying	 list	 of	 all	 top-level
images,	along	with	their	repository,	tag,	create	date,	and	virtual	size

One	 important	 thing	 to	keep	 in	mind	 is	 that	when	we	create	or	build	Docker
images	 on	 our	 local	 machine,	 various	 intermediate	 layers	 are	 created.	 For
example,	if	we	use	a	Dockerfile	that	may	have	multiple	commands	to	build	the
image,	each	command	executed	will	result	in	one	image	layer.	This	is	one	of	the
key	aspects	of	Docker	that	make	the	containers	lightweight	and	perfect	for	reuse.

Docker	RMI
The	docker	rmi	 command	 removes	 the	 requested	 image(s)	 from	 our	 local
machine:

docker	rmi[options]	image	[image,	image...]

For	 example,	 the	 docker	 rmi	 MySQL	 command,	 shown	 in	 Figure	 7.6,
removes	the	MySQL	image,	including	all	the	layers	that	were	installed,	from	the
host.

Figure	7.6	MySQL	image	removed	via	docker	rmi	command

Docker	Run
Once	we	download	(pull)	an	image,	the	next	logical	step	is	to	execute	(run)	the
image,	and	that’s	what	the	docker	run	command	does:
Click	here	to	view	code	image

docker	run	[options]	image:	tag	[command,	args]

This	 command	 spins	 up	 a	 container	 with	 its	 own	 file	 system,	 ports,	 and	 IP
address.	We	can	also	pass	some	options	along	with	the	run	commands	with	one
or	more	arguments.	Following	are	some	common	options:

•	i	switches	to	interactive	mode	with	STDIN	open.

•	t	allocates	a	pseudo-tty	console	terminal.

Many	other	options	are	available	for	the	docker	run	command,	such	as	for
starting	 the	 process	 in	 the	 detached	 (-d)	 state	 (background)—that	 is,	 the
container	 will	 start	 but	 not	 listen	 to	 the	 command	 line.	 We	 can	 also	 specify
commands	 to	 override	 the	 default	 command	 that	 is	 part	 of	 the	 image	 we	 are
running.	We	can	also	specify	runtime	constraints	on	CPU	and	memory.
As	an	example,	let’s	pull	the	Ubuntu	image	and	execute	the	run	command	(see

Figure	7.7):

docker	pull	ubuntu:latest

Figure	7.7	Downloading	Ubuntu	image	from	Docker	Hub	repository

That	command	pulls	the	latest	image	of	Ubuntu	on	the	local	host,	as	shown	in
Figure	7.8.

Figure	7.8	Latest	Ubuntu	image	pulled

Now	let’s	run	Ubuntu	on	the	local	host	with	options	i	and	t.	Let’s	also	specify
that	we	want	to	run	the	shell	process:

docker	run	–it	ubuntu	sh

We	are	now	running	the	Ubuntu	container	on	our	local	machine	with	an	entry
to	the	shell	prompt.	From	here,	we	can	run	any	shell	command	we	desire.	Figure
7.9	shows	a	few	simple	ones,	such	as

•	echo	'Learning	Docker'

•	ls

•	cd	bin	(to	view	the	contents	of	the	bin	directory)

Figure	7.9	Running	the	interactive	shell

As	you	 can	 see,	 the	bin	directory	has	 the	 essential	 programs	 that	 the	 system
requires	to	operate.

Docker	ps
The	docker	ps	command	lists	all	the	current	running	containers,	as	shown	in
Figure	7.10:

docker	ps	[Options]

Remember	that	each	container	runs	one	and	only	one	process.	In	this	case,	we
don’t	have	any	running	container,	hence	the	empty	list.

Figure	 7.10	 The	 docker	 ps	 command	 revealing	 all	 currently	 running
containers

Let’s	run	the	ps	command	again	with	the	–a	option,	as	shown	in	Figure	7.11,
to	see	all	the	containers,	even	the	ones	that	aren’t	running.

Figure	7.11	The	-a	option	adding	inactive	containers	to	the	mix

As	we	can	see,	since	we	exited	the	shell	prompt,	our	Ubuntu	container	is	not
running	or	active	anymore.	It	is	not	deleted,	though,	just	inactive.	We	can	restart
the	container	if	we	like,	as	we	will	learn	soon.

Docker	Logs
The	docker	logs	 command	provides	 the	given	container’s	 log	 files,	which
contain	the	standard	(stdout	and	stderr)	output	of	the	container:

docker	logs	[Options]	Container

This	 command	 is	 available	 only	 for	 containers	 with	 a	 JSON	 File	 logging
driver.

As	an	example,	let’s	run	the	following	command	to	run	the	shell	process:

docker	run	–it	ubuntu	sh

Run	a	couple	of	shell	commands,	such	as	ls,	–a,	and	cd	bin,	as	shown	in
Figure	7.12:

Figure	7.12	Some	examples	of	shell	commands

Open	 another	 terminal	 window	 and	 find	 the	 container	 ID	 for	 the	 Ubuntu
container	we	just	started	by	running	the	following	command	(see	Figure	7.13):

docker	ps	–a

Figure	7.13	Finding	the	container	ID	for	the	Ubuntu	container	we	just	started

Copy	the	container	ID	for	the	running	Ubuntu	container.	Now	we	can	execute
the	 log	 commands	 to	 review	 the	 log	 for	 this	 particular	 container	 (see	 Figure
7.14):

docker	log	eded3539719c

Figure	7.14	Executing	the	log	commands	to	review	this	container’s	log

We	can	see	the	content	of	the	log—in	this	case,	the	history	of	commands	that
have	been	executed.
Let’s	 take	 another,	 more	 complex	 example.	 Let’s	 download	 and	 create	 a

MySQL	container.
First,	pull	the	latest	MySQL	image	(see	Figure	7.15):

docker	pull	MySQL:	latest

Figure	7.15	Latest	MySQL	image	pulled

Next,	use	the	run	command	to	build	the	MySQL	container	(see	Figure	7.16)
and	note	the	container	ID:
Click	here	to	view	code	image

docker	run	--name	myDatabase	\
>	-e	MySQL_ROOT_PASSWORD=myPassword	\
>	-d	MySQL:latest

Here,	name	is	the	name	of	the	database,	e	is	the	flag	for	environment	variable
specifying	 the	 database	 password,	 and	d	 is	 the	 option	 for	 the	docker	 run
command	to	start	the	process	in	detached	mode.

Figure	7.16	Running	the	MySQL	container

Next,	verify	the	container	process:

docker	ps

Notice	the	container	is	up	and	running,	as	shown	in	Figure	7.17.

Figure	7.17	Verifying	the	container	process

Now	that	 the	container	 is	up	and	 running,	we	need	 to	connect	 to	 it.	First	we
need	to	know	is	the	port.	We	know	the	default,	but	let’s	check	in	the	log	file	by
running	the	logs	command:

docker	logs	fcb85434597b

Here,	fcb85434597b	 is	 the	container	ID	we	previously	started	(see	Figure
7.18).

Figure	7.18	Running	the	logs	command

As	 shown	 in	Figure	7.19,	we	 see	 the	 version	 and	 the	 port	where	MySQL	 is
listening.

Figure	7.19	The	version	and	port	where	MySQL	is	listening

Please	 note	 again	 that	 the	 Docker	 logs	 show	 the	 stdout	 and	 stderr
information	 for	 the	 container.	 Don’t	 confuse	 this	 with	 standard	 log	 file	 for
MySQL.

Note
Another	way	to	check	what	port(s)	a	container	is	listening	on	is	to	check	the
docker	 ps	 output.	 If	 you	 notice,	 from	 Figure	 7.18,	 there’s	 a	 PORTS
column	that	says	3306/tcp,	which	indicates	that	MySQL	will	be	listening	on
port	3306.

Docker	Restart
The	docker	restart	command	restarts	the	specified	container:

docker	restart	[Options]	Container	ID	(s)

Let’s	 restart	 our	 Ubuntu	 container	 by	 specifying	 the	 container	 ID,	 which	 is
c8b9770c88e9	from	our	earlier	example.	See	Figure	7.20.

Figure	7.20	Restarting	our	Ubuntu	container

If	we	run	the	ps	command	again,	we	should	see	an	active	container,	as	shown
in	Figure	7.21.

Figure	7.21	The	ps	command	revealing	an	active	container

As	you	can	see,	we	did	not	get	the	shell	prompt.	We	can	fix	that	by	running	the
docker	attach	command,	which	is	discussed	next.

Docker	Attach
The	 docker	 attach	 command	 allows	 the	 user	 to	 attach	 to	 a	 specified
running	container	to	control	it	interactively	or	to	see	the	ongoing	output:

docker	attach[Options]	Container	ID

Let’s	 run	 this	command	 to	attach	 to	our	Ubuntu	container,	 c8b9770c88e9,	 to
interact	with	the	shell	prompt.	See	Figure	7.22.

Figure	7.22	Interacting	with	the	shell	prompt	via	docker	attach	command

Notice	 we	 have	 the	 command	 prompt	 back	 and	 we	 can	 carry	 on.	 Another
important	aspect	is	that	we	will	always	get	to	the	shell	prompt	when	we	restart
this	 container—every	 time,	 no	 matter	 what.	 We	 cannot	 change	 its	 behavior
because	 that’s	 how	we	 spun	 up	 the	 container	 initially	 using	-it	 in	 our	 run
command.	But	certainly	we	can	run	the	same	Ubuntu	image	again	with	different
options,	parameters,	and	commands.	That’s	the	beauty	of	Docker.

Docker	Remove
The	Docker	remove,	or	rm,	command	removes	one	or	more	specified	containers:

docker	rm	[Options]	Container(s)

As	 an	 example,	 let’s	 try	 to	 remove	 the	Ubuntu	 container.	We	must	 stop	 the
container	before	we	can	remove	it	or	use	–f	(force)	option	to	directly	remove	it,
which	 actually	 sends	 a	SIGKILL	 to	 the	 process	 running	 inside	 the	 container,
and	then	container	will	be	removed:

docker	stop	[Options]	Container(s)

Figure	7.23	shows	the	status	of	our	Ubuntu	container.	The	Ubuntu	container	is
in	 running	 state	 and	 has	 been	 up	 for	 the	 last	 38	 hours,	 as	 shown	 under	 status
attribute.

Figure	7.23	Status	of	Ubuntu	container

Let’s	run	the	stop	command	and	execute	ps	–	a	again.	See	Figure	7.24.

Figure	7.24	Running	the	stop	command	and	executing	ps	–	a

As	you	can	see,	the	container	is	no	longer	running,	and	the	status	is	exited	with
code	 137,	 which	 means	 the	 container	 received	 the	 SIGKILL	 command.	 The
stop	command	sends	a	SIGTERM	and	then	SIGKILL	after	a	grace	period.	We

can	 adjust	 the	 grace	 period	 by	 specifying	 the	 number	 of	 seconds	with	 the	–t
option.	The	 time	 option	may	 be	 very	 important	 in	 instances	where	we	want	 a
process	to	complete	the	outstanding	requests,	as	in	the	case	of	HTTP.
We	 can	 also	 use	 the	 docker	 kill	 command,	 which	 directly	 sends	 the

SIGKILL;	 it	 does	 not	 give	 the	 container	 process	 an	 opportunity	 to	 exit
gracefully.	However,	 it	 also	 provides	 options	 that	 let	 us	 send	 something	 other
than	SIGKILL	to	the	container	process.
Now	that	the	container	has	been	stopped,	let’s	remove	the	container	and	do	ps

–a	again.	See	Figure	7.25.

Figure	7.25	Container	removed

Notice	that	the	container	has	been	completely	removed	with	no	trace	in	the	ps
–a	command.

Docker	Inspect
The	docker	inspect	command	provides	in-depth,	low-level	information	on
the	container	or	image:
Click	here	to	view	code	image

docker	inspect	[Options]	Container	ID/Image

Let’s	 run	 this	 command	 on	 our	MySQL	 container,	 as	 shown	 in	 Figure	 7.26;
recall	that	fcb85434597b	is	the	container	ID	from	previous	examples:

docker	inspect	fcb85434597b

Figure	7.26	Results	of	Docker	inspect

Notice	 it	 returns	 the	 complete	 JSON	 array	with	 all	 the	 information.	We	 can
specify	another	format	or	query	for	some	specific	information,	such	as	database
name,	IP	address,	and	port	information.
This	command	returns	the	database	name:

Click	here	to	view	code	image

docker	inspect	–format='{{.Name}}'	fcb85434597b

This	command	returns	the	IP	address	of	the	MySQL	container:
Click	here	to	view	code	image

docker	inspect		\

>	–format='{{.NetworkSettings.IPAddress}}'	fcb85434597b

Docker	Exec
The	docker	exec	 command	enables	you	 to	 remotely	 run	a	command	 in	an
already	running	container:
Click	here	to	view	code	image

docker	exec	[Options]	Container	ID	Command	[Arg...]

Let’s	 run	 this	 command	 on	 our	 Ubuntu	 container,	 as	 shown	 in	 Figure	 7.27;
recall	that	c8b9770c88e9	is	the	container	ID	from	previous	examples:

docker	exec	c8b9770c88e9	ls	-a

Figure	7.27	The	docker	exec	command	enabling	the	running	of	a	command
in	an	already	running	container

Docker	Rename
Are	 you	 tired	 of	 copying	 and	 pasting	 the	 container	 ID	 yet?	We	 can	 give	 our
containers	meaningful	names	that	we	can	more	easily	remember	and	categorize.
The	 docker	 rename	 command	 enables	 us	 to	 rename	 an	 already	 running
container:
Click	here	to	view	code	image

Usage:	docker	rename	Container	ID	new_name

Let’s	rename	our	Ubuntu	container.	Let’s	find	the	existing	name	first.

docker	ps	-a

Notice	in	Figure	7.28	that	the	current	name	of	our	container	is	jolly_gates.

Figure	7.28	Results	of	docker	rename

Let’s	execute	the	rename	command:
Click	here	to	view	code	image

docker	rename	e510f8e769fc	Parminder

Notice	in	Figure	7.29	that	executing	the	rename	command	changed	the	name
of	our	container.

Figure	7.29	Container	renamed	successfully

Now	we	 can	 use	 this	 new	 name	 to	 run	 various	 other	 commands	 instead	 of
using	HexID.	See	Figure	7.30.

Figure	7.30	New	name	all	set	to	run	other	commands

Docker	Copy
The	docker	cp	command	enables	us	to	copy	files	between	a	container	and	the
machine	on	which	the	container	 is	 running.	The	following	pattern	copies	a	 file
from	the	container	to	the	local	machine:
Click	here	to	view	code	image

docker	cp	[OPTIONS]	CONTAINER:SRC_PATH	DEST_PATH

The	 following	 pattern	 copies	 a	 file	 from	 the	 local	 machine	 to	 the	 specified
container:
Click	here	to	view	code	image

docker	cp	[OPTIONS]	SRC_PATH|-	CONTAINER:DEST_PATH

Let’s	 run	 the	 first	command	on	our	Ubuntu	container.	Figure	7.31	 shows	 the
sample.txt	file	we’ll	use	for	this	example.

Figure	7.31	sample.txt	file	we	will	use

Parminder	 is	 the	 container	 name	 from	 the	previous	 example,	 so	 following	 is
the	command	to	copy	the	file	(see	Figure	7.32):
Click	here	to	view	code	image

docker	cp	Parminder:/var/sample.txt	.

Figure	7.32	Copying	a	file	from	the	Parminder	container	to	the	local	machine

Now	 let’s	 try	 the	 command	 for	 copying	 from	 the	machine	 to	 the	 container.
Here	we	use	an	example	file	called	Myfile.txt	on	the	local	machine,	as	shown	in
Figure	7.33.

Figure	7.33	Copying	Myfile.tx	from	the	machine	to	the	container

The	following	command	copies	this	file	to	the	container	called	Parminder	and
in	 the	 /var	 directory,	 as	 shown	 in	 Figure	 7.34;	 recall	 that	 Parminder	 is	 the
container	ID	from	the	previous	example:
Click	here	to	view	code	image

docker	cp	MyFile.txt	Parminder:/var

Figure	7.34	Copying	Myfile.tx	 from	 the	 local	machine	 to	 /var	 directory	 inside
container	named	Parminder

Docker	Pause/Unpause
The	 docker	 pause	 command	 suspends	 all	 processes	 in	 the	 specified
containers:
Click	here	to	view	code	image

docker	pause	CONTAINER	[CONTAINER...]

On	Linux,	 this	 command	uses	 the	 cgroups	 freezer.	The	docker	unpause
command	gets	the	container	running	again:
Click	here	to	view	code	image

docker	unpause	CONTAINER	[CONTAINER...]

Let’s	run	the	pause	command	on	our	Ubuntu	container,	as	shown	in	Figure
7.35;	recall	that	Parminder	is	the	container	name	from	previous	examples:

docker	pause	Parminder

Figure	7.35	Running	the	docker	pause	command	on	our	Ubuntu	container

We	have	just	paused	the	container,	effectively	pausing	all	the	processes	within.
Try	 running	 a	 command	 inside	 the	 container,	 and	 you’ll	 see	 something	 like
Figure	7.36.

Figure	7.36	Attempting	to	run	a	command	inside	a	paused	container

Let’s	unpause	it,	as	shown	in	Figure	7.37:

docker	unpause	Parminder

Figure	7.37	Unpaused	container

We	have	just	unpaused	the	container,	so	all	the	process	are	again	running.	Our
hung	ls	command	that	was	in	the	wait	state	also	finished	executing,	as	shown	in
Figure	7.38.

Figure	7.38	Hung	ls	command,	previously	in	wait	state,	now	got	executed

Docker	Create
The	docker	create	command	creates	a	new	writeable	container	 layer	over
the	specified	image	and	prepares	it	for	running	the	specified	command:
Click	here	to	view	code	image

docker	create	[OPTIONS]	IMAGE	[COMMAND]	[ARG...]

The	container	ID	is	then	printed	as	a	result.	This	command	is	a	little	different
from	running	docker	run	-d	in	that	the	container	is	never	started.	You	can
then	 use	 the	docker	start	 command	 to	 start	 the	 container.	 The	 ability	 to
create	a	container	but	delay	starting	it	is	handy	when	your	IT	team	wants	to	set
up	a	container	configuration	in	advance	so	that	it	is	ready	to	start	when	you	are
ready	to	go	live.
Let’s	create	a	new	container,	as	shown	in	Figure	7.39:

docker	create	-t	-i	fedora	bash

Figure	7.39	New	container	created

Notice	the	container	is	created	but	not	started.

Docker	Commit
The	docker	commit	 command	 is	 straightforward	 but	 important—it	 allows
you	to	create	a	new	image	from	the	container’s	changes:
Click	here	to	view	code	image

docker	commit{Options]	Container	[Repository:Tag]

As	you	make	changes	to	your	container	and	want	to	ship	it	as	a	new	image	to,
say,	another	 development	 or	 test	 team,	 this	 command	 creates	 a	 new	 image	 for
you	from	the	running	container.

Docker	Diff
The	docker	diff	 command	 is	 self-explanatory,	 but	 it’s	 another	 important
command—it	lists	the	changed	files	and	directories	in	a	container	file	system:

docker	diff	Container	ID

Over	 time,	 as	you	make	changes	 to	your	 container,	 this	 command	highlights
the	file	system	differences	relative	to	the	base	image.

Dockerfile
Let’s	build	the	same	MySQL	container	we	used	in	the	previous	examples	on	top
of	 Ubuntu	 OS	 using	 a	 Dockerfile.	 As	 we	 discussed	 earlier,	 the	 Dockerfile	 is
basically	a	set	of	instructions	or	commands	that	Docker	can	execute	to	build	an
image.	 It	 is	 similar	 to	a	 text	 file	 and	can	be	created	without	 any	programming
language	knowledge.	It	has	simple	commands	that	you	can	use	with	very	simple

syntax.
There	is	a	simple	format	that	you	need	to	learn	here:

•	The	Dockerfile	must	always	start	with	the	FROM	instruction	that	specifies	the
base	 image	 to	 start	with.	Use	#	 in	 the	beginning	of	 the	 line	 for	 comments.
FROM	 instructions	 do	 support	 variables,	 and	 for	 that	 reason,	 the	 only
instruction	that	can	precede	FROM	 instruction	is	 the	ARG	 instruction.	Here’s
an	example:
Click	here	to	view	code	image

ARG	OS_VERSION=14.04
FROM	Ubuntu:${OS_VERSION}

•	The	syntax	is	Instruction	Arguments.

•	Every	instruction	is	executed	sequentially	from	top	to	bottom.

•	 The	 Dockerfile	 and	 the	 associated	 files	 in	 this	 directory	 are	 sent	 to	 the
Docker	daemon.	For	that	reason,	and	to	keep	the	size	of	your	image	light,	do
not	store	nonessential	files	in	this	directory.

Here	are	some	of	the	simple	instructions	you	can	use	in	a	Dockerfile:

•	ADD	copies	the	file(s)	from	the	specified	source	on	the	host	system	or	a	URL
to	the	specified	destination	within	the	container.

•	 CMD	 executes	 the	 specified	 command	 when	 the	 container	 is	 instantiated.
There	can	be	only	one	CMD	inside	a	Dockerfile.	If	there’s	more	than	one	CMD
instruction,	then	the	last	appearing	CMD	instruction	in	the	DOCKERFILE	will
be	executed.

•	ENTRYPOINT	specifies	 the	default	executable	that	should	be	run	when	the
container	is	started.	This	is	a	must	if	you	want	your	image	to	be	runnable	or
you	use	CMD.

•	ENV	sets	the	environment	variables	in	the	Dockerfile,	which	then	can	be	used
as	part	 of	 the	 instructions—for	 example,	ENV	MySQL_ROOT_PASSWORD
mypassword.

•	EXPOSE	specifies	the	port	number	where	the	container	will	listen.

•	FROM	 specifies	 the	 base	 image	 to	 use	 to	 start	 the	 build	 image.	This	 is	 the
very	first	command,	and	a	mandatory	one	in	the	Dockerfile.

•	 MAINTAINER	 sets	 the	 author	 information	 in	 the	 generated	 images—for
example,	MAINTAINER	pkocher@domain.com.

•	RUN	 executes	 the	 specified	command(s)	 and	creates	a	 layer	 for	every	RUN
instruction.	The	next	layer	will	be	built	on	the	previous	committed	layer.

•	USER	sets	 the	user	name	or	user	ID	to	be	used	when	running	the	 image	or
various	instructions	such	as	RUN,	CMD,	and	ENTRYPOINT.

•	VOLUME	specifies	one	or	more	shared	volumes	on	the	host	machine	that	can
be	accessed	from	the	containers.

•	WORKDIR	 sets	 the	 working	 directory	 for	 any	 RUN,	 CMD,	 ENTRYPOINT,
COPY,	or	ADD	instruction.

MySQL	Dockerfile
Now	that	we	understand	the	Dockerfile,	let’s	build	one	for	a	MySQL	container
on	top	of	Ubuntu	OS.	Use	the	editor	of	your	choice	(Vi,	Pico,	etc.)	and	create	a
new	file	called	Dockerfile.	Add	the	following	instructions:
Click	here	to	view	code	image

From	ubuntu:14.04
Maintainer	pkocher@domain.com
Run		apt	–get	update
Run		apt	–get	–y	install	MySQL-server
EXPOSE	3306
CMD	["/usr/bin/MySQLd_safe"]

Save	the	file	and	exit.	Notice	we	are	starting	from	the	base	 image	of	Ubuntu
version	14.04.	The	RUN	command	apt	–get	–y	install	 downloads	 the
MySQL	 package	 and	 dependencies	 and	 installs	 it.	 The	 EXPOSE	 command
exposes	port	3306	where	the	container	will	listen.
Finally,	the	docker	build	command	starts	the	MySQL	process	in	the	same

mode:

docker	build	[Options]	Path/URL

This	command	builds	an	image	from	the	specified	Dockerfile	and	the	context.
Context	 means	 the	 specific	 location	 for	 other	 resource	 files.	 Context	 can	 be
specified	by	a	path	directory	or	a	URL	to	the	GitHub	repository.
You	should	always	pass	the	-t	option	with	docker	build	to	tag	the	image

mailto:pkocher@domain.com
mailto:pkocher@domain.com

so	it	is	easily	identifiable.	A	simple,	easily	readable	tag	will	help	you	manage	the
images.
Let’s	build	 the	MYSQL	 image	using	 the	Dockerfile	we	created,	 as	 shown	 in

Figure	7.40—make	sure	you	name	the	file	Dockerfile;	there	is	nothing	else	in	the
same	directory:

docker	build	-t	pkocher/MySQL

Figure	7.40	Building	the	MYSQL	image

Notice	in	Figure	7.41	that	Docker	builds	starting	from	the	first	instructions	and
goes	sequentially.	Each	instruction	is	built	once	and	cached.

Figure	7.41	Docker	instructions	built	sequentially	and	cached

You	can	try	rebuilding	the	same	Dockerfile	again,	and	basically	nothing	will	be
rebuilt,	since	nothing	changed.	Try	it	by	executing	the	same	command.
Once	the	build	is	complete,	you	have	created	the	image	that	you	can	check	into

your	repository.	Let’s	confirm:

docker	images

As	you	can	see	in	Figure	7.42,	the	pkocher/MySQL	image	is	ready.

Figure	7.42	The	pkocher/MySQL	image	now	ready

Now,	let’s	run	this	image	and	validate	that	it	does	what	it	is	supposed	to	do,	as
shown	in	Figure	7.43:
Click	here	to	view	code	image

docker	run	–d	–p	3306:3306	pkocher/MySQL

Figure	7.43	Running	the	pkocher/MySQL	image

Recall	that	in	our	Dockerfile	we	have	one	CMD	that	is	supposed	to	bring	up	the
MySQL	server.	Let’s	confirm:

docker	ps

As	you	can	see	in	Figure	7.44,	our	image	is	up	and	running.

Figure	7.44	Image	up	and	running

Let’s	 go	 a	 little	 deeper	 to	 confirm	more	 accuracy	 by	 running	 some	 queries.
First,	we’ll	use	the	exec	command	to	execute	bash	on	this	container,	as	shown
in	Figure	7.45;	notice	that	5063c4bed669	is	the	container	ID	from	the	previous
commands:

docker	exec	–it	5063c4bed669	bash

Figure	7.45	Using	docker	exec	command	to	execute	bash

Let’s	 get	 inside	 MySQL	 and	 run	 some	 queries	 to	 confirm	 further	 that
everything	is	up	and	running,	as	shown	in	Figure	7.46:
Click	here	to	view	code	image

Command:	mysql
show	databases;
connect	information_schema
show	tables

Figure	7.46	Confirming	that	everything	is	up	and	running	properly

Docker	Compose
Applications	 using	 Docker	 are	 typically	 multicontainer	 applications.	 That	 is,
they	have	 components	 (e.g.,	 app,	web,	 database)	 that	 are	 deployed	 in	multiple
Docker	containers.	To	simplify	 the	definition	of	multicontainer	applications,	as
well	as	to	run	them	in	an	easy	way,	Docker	introduced	Docker	Compose.
Let’s	assume	we	want	to	spin	up	an	application	that	consists	of	Tomcat	and	a

MySQL	database.	Here’s	 how	we	 can	 capture	 these	 two	 services	 in	 a	 docker-
compose.yml	file.
Click	here	to	view	code	image

version:	'2'
services:
		tomcat:
				image:	'tomcat:7'
				container_name:	appserver
				ports:
						-	'8080:80'
				depends_on:
						-	db
		db:
				image:	'mysql:5.7'
				container_name:	dbserver
				ports:
						-	'3306:3306'
				environment:
						-	MYSQL_ROOT_PASSWORD=sample
						-	MYSQL_DATABASE=helpdesk
						-	MYSQL_USER=helpdesk
						-	MYSQL_PASSWORD=helpdesk

Docker	Compose	uses	YAML	(YAML	Ain’t	Markup	Language)	file.	(You	can
read	 up	 about	 YAML	 at	 http://www.yaml.org.)	 Docker	 Compose	 uses	 it	 for
configuration,	 but	 YAML	 can	 be	 used	 in	many	 other	 types	 of	 applications	 as
well.
In	 the	 docker-compose.yml	 file,	 we	 have	 defined	 two	 services:	 Tomcat	 and

MySQL.	Services	configuration	options	are	self-explanatory	at	this	stage.	One	of
the	key	things	to	note	is	that	Tomcat	service	has	an	option	called	depends_on
in	its	configuration,	and	it	has	db	as	a	dependency.	This	instructs	Docker	to	start
the	database	service	first	and	Tomcat	second.	Docker	Compose	has	many	more
options	that	you	can	explore	yourself	from	Docker	online	documentation.
Having	defined	the	docker-compose.yml	file,	the	way	to	start	the	services	is	to

use	the	following	command.

Command:	docker-compose	up	–d

This	command	inspects	the	compose	file,	then	finds	out	the	services	defined	in
the	configuration	file,	builds	a	dependency	graph	on	the	order	in	which	services

http://www.yaml.org

need	to	be	started,	and	finally	starts	them	in	that	order.	If	the	image	configured	in
the	services	section	is	not	located	in	the	local	machine,	then	it	fetches	the	image
from	the	Docker	 registry	 as	usual.	Figure	7.47	 shows	 the	 output	 from	 running
the	command.

Figure	7.47	Running	Docker	Compose

As	 you	 can	 see	 in	 the	 figure,	 since	 the	 Tomcat	 and	MySQL	 images	 are	 not
available	locally,	they	were	pulled	from	the	repository	before	they	were	started.
Another	key	thing	to	note	is	that,	since	MySQL	is	marked	as	a	dependency	for
Tomcat,	 MySQL	 was	 downloaded	 and	 subsequently	 started	 first	 before	 the
Tomcat	service	was	started.
This	 concludes	 our	 discussion	 on	Docker	 commands.	 These	 commands	will

continue	 to	 evolve,	 so	 keep	 yourself	 up	 to	 date	 by	 reviewing	 Docker	 online
documentation.

Chapter	8

Containers	Networking

In	 the	 previous	 three	 chapters,	 we	 learned	 the	 basics	 of	 containers	 and	 how
Docker	 takes	 containers	 to	 the	 next	 level.	 But	 simply	 standing	 up	 containers
does	 not	 serve	 a	 purpose:	 the	 containers	 need	 to	 talk	 to	 each	 other,	 and
connectivity	 with	 the	 external	 world	 must	 be	 designed	 as	 part	 of	 your
deployment.	 In	 this	 chapter,	we	discuss	 and	 learn	 about	 networking	options	 in
the	world	of	containers.	First,	let’s	refresh	our	knowledge	of	some	basic	concepts
in	Linux	that	will	assist	our	discussion	of	containers	networking.

Key	Linux	Concepts
Containers,	 as	 we	 know,	 are	 self-contained	 and	 isolated	 virtual	 environments.
They	can	run	an	entire	application	or	part	of	an	application.	In	either	case,	one	of
the	key	needs	is	connectivity.
We	have	been	using	a	client	to	connect	to	our	containers,	but	what	we	need	is

global	 connectivity.	 We	 need	 connectivity	 between	 containers	 within	 a	 host,
within	multiple	hosts,	 and	between	multiple	data	 centers—that	 is,	we	need	 the
ability	to	create	our	own	network.	Docker	uses	the	Linux	networking	and	kernel
features	to	provide	such	capabilities.
We	don’t	go	into	much	detail	on	Linux	basics,	but	you	must	understand	some

key	Linux	networking	concepts	to	understand	Docker	networking:

•	 Linux	 network	 namespace.	 Usually,	 a	 Linux	 installation	 provides	 a
standard	set	of	network	interfaces	and	routing	table	entries.	This	set	 is	used
by	the	entire	operating	system	to	make	the	routing	and	networking	possible.
Think	 of	 network	 namespace	 as	 a	 network	 stack	 with	 its	 own	 network
interfaces	and	respective	routing	table	entries	operating	in	isolation.	Docker
uses	this	feature	of	network	namespace	to	isolate	containers	and	provide	the
security.	You	can	have	multiple	network	namespaces,	giving	you	the	ability
to	run	each	container	in	isolation,	rendering	each	one	unable	to	communicate
with	 other	 containers	 on	 the	 same	host	 until	 configured	 by	 the	 admin.	The
host	has	its	own	namespace	that	contains	host	interfaces	and	routing	tables.

•	Linux	bridge.	 This	 is	 part	 of	 the	Linux	 kernel	module	 and	 enables	Linux
networking.	Think	of	it	as	a	layer	2	virtual	switch	that	also	does	filtering.	It
makes	 forwarding	 decisions	 based	 on	 a	 MAC	 address	 table	 that	 it	 learns
dynamically	through	the	traffic	inspection.

•	 Linux	 virtual	 Ethernet	 devices.	 Also	 known	 as	 veth	 (virtual	 Ethernet)
devices,	 these	 are	 interfaces	 that	 connect	 the	 network	 namespaces.	We	 can
create	multiple	entries	on	the	network	namespace	stack,	and	we	configure	the
veth	 to	 establish	 the	 connectivity.	Think	 of	 these	 as	 pipes	 that	 can	 connect
network	namespaces	to	each	other	and	to	the	external	network.

•	Linux	iptables.	iptables	is	part	of	the	Linux	kernel	that	provides	the	packet
filtering	 and	 firewall	 capabilities	 to	 the	 operating	 system.	 You	 can	 define
policies	and	a	chain	of	policies	to	allow	or	block	traffic.	Docker	utilizes	this
capability	 to	 segment	 traffic	 between	 containers,	 implement	 port	 mapping
where	you	can	bind	the	container	port	to	the	host	port,	and	more.

Now	 that	 we’ve	 outlined	 Linux	 networking	 capabilities,	 let’s	 discuss
connection	types	in	containers,	starting	with	the	simplest:	linking.

Linking
Before	 Docker	 released	 advanced	 networking	 features	 (which	 we	 discuss
shortly),	 the	simplest	way	of	 connecting	 two	or	more	 containers	was	 to	 “link”
the	containers.	The	--link	 flag,	 now	a	deprecated	 legacy	 feature	 of	Docker,
allows	containers	to	discover	and	secure	a	connection	for	transfer	of	information
between	 containers.	 This	 technique	 is	 more	 of	 a	 generic	 way	 to	 achieve
connectivity	 than	 a	 true	 ports-based	 networking	 approach.	 It	 is	 done	 through
sharing	environment	variables	and	/etc/hosts	file	entries,	which	are	automatically
created	for	us	by	the	Docker	engine	to	connect	the	containers.
As	 an	 example,	 let’s	 bring	 up	 the	 Tomcat	 application	 server	 and	 a	MySQL

database	and	establish	connectivity	between	them.	These	two	should	be	able	to
interact	with	each	other.	Let’s	get	the	latest	Tomcat	image,	shown	in	Figure	8.1,
by	executing	the	following	command:

docker	pull	tomcat

Figure	8.1	Latest	Tomcat	image	pulled

Next,	we	start	our	Tomcat	container;	we’ll	call	it	tomcatContainer:
Click	here	to	view	code	image

docker	run	–d	--	name	tomcatContainer	tomcat

To	make	sure	our	container	is	up	and	running,	we	use

docker	ps

Figure	8.2	shows	that	it	is	running!

Figure	8.2	Tomcat	container	is	running

Now	let’s	bring	up	our	MySQL	container	and	link	it	with	our	Tomcat	container
using	the	--link	flag:
Click	here	to	view	code	image

docker	run	--link	tomcatContainer:tomcat	--name	sqlcontainer	\

>	-e	MYSQL_ROOT_PASSWORD=password	-d	mysql

It	should	pull	the	MySQL	if	it’s	not	available	locally,	as	shown	in	Figure	8.3.

Figure	8.3	MySQL	pulled

Let’s	confirm	 these	 two	containers	are	 linked	as	 specified.	First,	 log	 into	 the
MySQL	container	by	executing	the	following	command:
Click	here	to	view	code	image

docker	exec	–it	sqlcontainer	/bin/bash

Next,	check	the	hosts	file	located	at	/etc/hosts:

cat	/etc/hosts

Notice	 in	 Figure	 8.4	 that	 we	 do	 have	 an	 application	 server	 container	 entry
along	with	its	IP	address	of	172.17.0.2.

Figure	8.4	App	server	entry	and	IP	address	displayed

Let’s	 validate	 the	 IP	 address	 of	 the	 Tomcat	 container	 by	 opening	 another
terminal,	as	shown	in	Figure	8.5:
Click	here	to	view	code	image

docker	inspect	TomcatContainer	|	grep	IP

Figure	8.5	Tomcat’s	IP	address

Note	that	the	IP	addresses	172.17.0.2	matches	with	what	we	found	in	the	host
file,	which	means	everything	is	in	place	to	establish	connectivity.	Let’s	test	that
by	pinging	 the	Tomcat	 container	 from	 the	MySQL	container.	Go	back	 to	 your
previous	terminal	and	issue	this	command:

ping	172.17.0.2

Figure	8.6	shows	us	the	connectivity	was	a	success!

Figure	8.6	Connectivity	success

Default	Options
Because	the	--link	flag	has	been	deprecated	and	may	eventually	be	removed,
its	use	 should	be	avoided.	 In	place	of	--link,	Docker	 provides	 three	default
connection	options,	which	are	all	created	automatically	during	installation:	none,
host,	and	bridge.	Run	the	following	command	to	list	these	networks:

docker	network	ls

You	should	see	the	output	shown	in	Figure	8.7.

Figure	8.7	Network	list

Let’s	look	into	each	of	these	networks.

None
This	networking	option	is	the	simplest	of	all	and	basically	means	no	networking.
It	does	receive	a	container-specific	stack	and	namespace,	but	it	lacks	a	network
interface.	 Consequently,	 no	 IP	 address	 is	 configured	 for	 this	 container,	 and
cannot	 connect	 with	 other	 containers	 or	 an	 external	 network.	 It	 does	 have	 a

loopback	address	assigned.
As	 an	 example,	 let’s	use	our	Tomcat	 image	 again	by	 specifying	 the	network

option	none:
Click	here	to	view	code	image

docker	run	–it	--network=none	tomcat	/bin/bash

Let’s	check	out	the	IP	address	of	the	container:
Click	here	to	view	code	image

docker	inspect	43c10fe289b3|	grep	IP

As	expected,	no	IP	address	is	assigned,	as	shown	in	Figure	8.8.

Figure	8.8	No	IP	address	assigned

As	 you	 can	 see,	 this	 particular	 container	 is	 completely	 isolated	 from	 other
containers	and	 the	host	network.	This	kind	of	 configuration	 is	used	 for	 testing
purposes	 in	 isolated	 environments,	 special	 custom	 networking,	 or	 instances
where	no	connectivity	is	intended.

Host
As	the	name	suggests,	 the	host	option	adds	 the	container	 to	 the	host’s	network

namespace,	so	the	host	and	the	container	share	the	same	network	namespace	we
discussed	 earlier.	 This	 is	 the	 second	 simplest	 of	 the	 networking	 options:	 the
added	container	can	use	all	the	interfaces	on	the	host	stack.	In	this	case,	there	is
one-to-one	port	mapping	between	the	container	and	the	host	machine—that	is,	if
you	 run	 the	 container	 on	 an	 application	 server	 on	 port	 8080,	 the	 application
server	will	be	available	on	port	8080	of	the	host.
There	 are	 two	 key	 things	 to	 note	 here:	 you	 will	 still	 need	 to	 do	 network

configurations,	and	in	this	mode	you	cannot	use	port	mapping.	The	reason	is	that
the	container	and	the	host	share	the	same	network	namespace.	If	another	service
wants	to	use	port	8080,	you	are	stuck.	This	may	not	be	the	case	with	the	bridge
option,	which	we	discuss	in	the	next	section.
Let’s	run	a	new	CentOS	image	by	specifying	the	network	option	host:

docker	run	--network=host	–d	centOS

Next,	we	validate	that	the	container	is	running,	and	we	log	into	it,	as	shown	in
Figure	8.9.
Click	here	to	view	code	image

docker	ps
docker	exec	–it	kickass_minsky	/bin/bash

Figure	8.9	Logging	into	our	CentOS	container

Looks	good	so	far.	Let’s	find	the	IP	address	of	our	CentOS	container:

ifconfig	|	grep	inet

Notice	in	Figure	8.10	that	the	IP	address	of	our	container	is	10.88.30.156.

Figure	8.10	Check	for	containers’	IP	address

Now	we	open	another	terminal	and	find	our	host	machine’s	IP	address:

Command:	ifconfig	|	grep	inet

The	 result,	 shown	 in	 Figure	 8.11,	 is	 what	 we	 would	 have	 expected:	 the
container	has	the	same	IP	address	as	the	host:	10.88.30.156.

Figure	8.11	Checking	for	our	machine’s	IP	address

Basically,	 this	 particular	 container	 networking	 behaves	 just	 as	 if	 it	 were	 a
physical	 server,	 which	 actually	 gives	 it	 the	 key	 benefit:	 performance—that	 is,
near-metal	speed.	Figure	8.12	shows	how	it	looks.

Figure	8.12	Host	networking

Bridge
Bridge,	 also	 known	 as	 docker0,	 is	 the	 default	 networking	 option	 if	 you	 don’t
specify	any	parameter	(none	or	host)	with	your	run	command.	Don’t	confuse
this	 with	 Linux	 bridge,	 which	 we	 discussed	 earlier,	 though	 Docker	 uses	 it	 to
provide	this	bridge	networking	functionality.
As	 you	 probably	 guessed	 from	 the	 name,	 bridge	 creates	 an	 internal	 private

network	 for	 containers	 to	 communicate	 with	 each	 other.	 Note	 that	 the	 IP
addresses	 assigned	 in	 this	 case	 are	 not	 accessible	 from	 outside	 the	 host.	 You
must	expose	the	ports	 to	provide	the	external	access.	To	understand	more,	let’s
run	the	following	command:

docker	network	inspect	bridge

As	you	can	see	in	Figure	8.13,	the	containers	section	is	empty,	since	we	have
no	containers	running.

Figure	8.13	Containers	section	empty

Let’s	 start	 a	 few	 containers	 by	 specifying	 a	bridge	 parameter	 in	 one	 and
leaving	the	other	default:
Click	here	to	view	code	image

docker	run	–d	--network=bridge	mysql
docker	run	–d	--network=default	tomcat

Now	let’s	run	the	inspect	command	again	and	notice	the	difference:

docker	network	inspect	bridge

As	you	can	see	in	Figure	8.14,	both	containers	are	connected	through	the	same
bridge	and	communicate	with	each	other	by	IP	addresses.

Figure	8.14	Containers	connected	through	the	same	bridge,	communicating	with
each	other	by	IP	addresses

You	can	attach	to	each	of	these	containers	and	see	what	the	network	looks	like
from	 inside	 the	 containers	 by	 running	 the	 attach	 command	 and	 then
ifconfig,	as	we	did	earlier	(see	Figure	8.11).	You	can	ping	Container	2	from
within	Container	1	to	test	the	connectivity.	So	the	question	is,	what	is	happening
in	the	backend	to	enable	this	bridge	and	connectivity?
Well,	 Docker	 is	 using	 the	 basic	 Linux	 networking	 to	 do	 this	magic.	All	 the

containers	 created	 through	 the	bridge	 parameter	 or	 without	 any	 networking
parameters	 are	 all	 connected	 to	 this	bridge	 (docker0)	 and	 are	 therefore	 able	 to
talk	 to	 each	 other.	 Docker	 puts	 all	 the	 necessary	 entries	 in	 the	 /etc/hosts/	 file
(iptables	and	the	like)	to	make	this	work.	Figure	8.15	shows	how	it	all	looks:

Figure	8.15	Bridge	networking

Custom	Networks
In	addition	to	the	three	default	networks	included	when	you	install	Docker,	you
can	 define	 custom	 networks	 to	 control	 connectivity.	 Docker	 provides	 network
drivers	that	you	can	utilize	to	create	 these	custom	networks.	Creating	a	custom

network	gives	you	full	control	and	 flexibility,	as	you	will	 learn	 in	 this	 section.
We	discuss	the	following	three	most	commonly	used	custom	networks:	custom
bridge	 network	 driver,	 overlays	 network	 driver,	 and	 underlays	 (MACVLAN)
network	driver.

Custom	Bridge	Network	Driver
The	custom	bridge	driver	is	very	similar	to	docker0,	which	we	discussed	earlier,
but	 has	 more	 features,	 such	 as	 IPAM	 (IP	 address	 management)	 and	 service
discovery.	It	also	provides	more	flexibility.
To	create	a	custom	bridge	network,	we	use	the	following	command:

Click	here	to	view	code	image

docker	network	create	[OPTIONS]	NETWORK

We	 can	 specify	 an	 IP	 address	 and	 subnet	 in	 the	 command	 if	 required,	 or
Docker	 will	 assign	 the	 next	 subnet	 available	 in	 the	 private	 IP	 space.	 Let’s
execute	this	command:
Click	here	to	view	code	image

docker	network	create	--driver	bridge	pkNetwork

Let’s	use	ls	again	to	verify:

docker	network	ls

The	pkNetwork	we	just	created	is	shown	in	Figure	8.16.

Figure	8.16	List	networks

Just	as	we	did	with	docker0,	let’s	inspect	this	new	network:

docker	network	inspect	pkNetwork

Look	at	Figure	8.17	and	note	 the	driver	we	used,	bridge.	This	 is	our	custom
bridge	network.

Figure	8.17	Custom	bridge	network

Currently,	 there	 are	 no	 containers	 built	 into	 this	 network.	 As	 in	 the
bridge/docker0	 example,	 we	 can	 create	 a	 few	 containers	 by	 specifying	 the
network	 as	 pkBridge	 and	 then	 inspect	 the	 network	 to	 see	 the	 association.
Behind	the	scenes,	Docker	creates	the	necessary	configuration	in	the	underlying
Linux	to	make	this	work.

Port	Mapping
With	 Docker,	 as	 we	 discussed	 earlier,	 containers	 on	 the	 same	 network	 can
communicate	with	each	other.	Of	course,	 that	 is	 the	purpose	of	 the	putting	 the
container	 on	 the	 same	 network.	 But	 the	 external	 access	 is	 firewalled—that	 is,
containers	cannot	be	accessed	from	the	outside	world	unless	access	is	explicitly
granted	to	make	the	external	connectivity	possible.	This	is	achieved	by	internal
port	mapping	whereby	we	 bind	 the	 container	 port	 to	 the	 host	 port	 within	 the
Docker	run	 command.	 We	 can	 also	 use	 a	 combination	 of	 the	 exposing	 and
publishing	commands	 to	 first	 expose	and	 then	publish	all	 the	 exposed	ports	 to
the	host	interfaces.
Consider	the	following	example:

Click	here	to	view	code	image

docker	run	–d	--network	pkBridge	-p	8000:80	--name	tomcatPK	–d	tomcat

We	 can	 access	 the	 Tomcat	 server	 externally	 from	 the	 browser,	 as	 shown	 in
Figure	8.18.

Figure	8.18	Accessing	Tomcat	server	externally	via	the	browser

So,	what	is	happening	here?	On	the	backend,	 the	Docker	engine	adds	a	NAT
(network	 address	 translation)	 rule	 in	 the	 Linux	 iptables.	 Take	 a	 look	 at	 the
underlying	iptables.	You	should	see	the	mapping	entry	in	the	list.

As	 you	 may	 have	 noticed,	 the	 bridge	 driver	 is	 a	 local	 scope—that	 is,	 it	 is
limited	 to	 a	 single	 host.	 The	 other	 two	 network	 drivers,	 overlay	 and	 underlay,
address	the	multihost	scope.

Overlay	Network	Driver
The	 overlay	 driver	 is	 utilized	 to	 achieve	 the	 containers’	 connectivity	 across
multiple	 hosts.	 It	 does	 this	 by	 decoupling	 the	 container	 network	 from	 the
underlying	 physical	 layer	 and	 creating	 a	 tunnel	 across	 the	 hosts	 to	 enable
communication.	Think	of	it	as	one	network	spread	across	multiple	hosts,	and	all
the	containers	on	this	particular	network	are	able	to	communicate	just	like	within
a	single	host.	Figure	8.19	shows	the	network.

Figure	8.19	Overlay	network

Note	 that	 the	 container	 on	 this	 particular	 overlay	 network	 won’t	 be	 able	 to
communicate	with	the	other	containers	even	on	the	same	host	unless	they	are	on
same	overlay	network.
Docker	 uses	 VXLAN	 (virtual	 extensible	 LAN)	 as	 the	 tunneling	 technology.

Just	 as	we	 created	 the	 bridge	 network,	 we	 can	 create	 the	 overlay	 network	 by
specifying	 the	 subnet.	 Docker	 automatically	 instantiates	 the	 required	 settings
(Linux	 bridge	 between	 hosts	 along	 with	 associated	 VXLAN	 interfaces)	 for
connectivity	on	each	host.

Docker	 is	 smart	 enough	 to	 create	 these	 settings	 only	 on	 hosts	 where	 this
container	connectivity	 is	 required.	This	 prevents	 the	 existence	 of	 each	 overlay
network	 on	 all	 the	 host	 machines,	 a	 key	 feature	 of	 Docker	 containers	 that
addresses	microservices’	distributed	deployment	and	connectivity	needs.

Docker	Swarm
In	 practice,	 you	 will	 have	 a	 cluster	 of	 Docker	 engine	 nodes	 running	 your
application	 services.	 Docker	 Swarm	 provides	 cluster	 management	 and
orchestration.	Each	Docker	engine	running	on	a	node	runs	in	the	swarm	mode.
One	 of	 the	 key	 features	 is	 multihosting	 networking,	 which	 Docker	 Swarm
provides	through	the	overlay	network	driver	we	just	discussed.	When	a	service	is
created	 that	 uses	 an	 overlay	 network,	 the	 manager	 node	 of	 the	 swarm
automatically	extends	the	network	to	other	nodes	that	are	part	of	this	service.
Docker	 Swarm	 is	 not	 the	 only	 way	 to	 manage	 clusters.	 Several	 other	 open

source	technologies,	such	as	Kubernetes	and	Mesos,	are	available.	In	such	cases,
the	overlay	network	 requires	a	valid	key-value	 store	 service	 to	 store	necessary
information	 such	 as	 discovery,	 endpoints,	 IP	 addresses,	 and	 the	 like.	 Support
key-value	stores	include	Consul,	Zookeeper,	and	etcd,	among	others.

Underlay	Network	Driver	or	Macvlan
A	media	access	control	virtual	local	area	network,	or	Macvlan,	is	another	built-in
network	driver	that	is	very	lightweight	and	is	simpler	than	other	drivers.	It	does
not	 use	 the	 built-in	Linux	 bridging	 and	 port	mappings;	 instead	 it	 connects	 the
container’s	interface	directly	to	the	host	interfaces	(eth0	or	a	sub-interface).
Basically,	 these	 are	 all	 virtual	 interfaces	 behind	 one	 host’s	 single	 physical

interface.	With	 this	 approach,	 each	 virtual	 interface	 has	 unique	 MAC	 and	 IP
addresses.	 This	 enables	 the	 containers	 to	 communicate	 directly	 with	 external
resources	 without	 the	 need	 for	 NATing	 and	 port-mapping,	 which	 makes	 this
driver	more	efficient	than	other	alternatives.
Like	overlay	networks,	Macvlan	networks	are	segmented	from	other	networks.

Containers	that	live	on	the	same	host	but	not	on	this	network	cannot	talk	to	each
other.	Figure	8.20	shows	this	underlay	network.

Figure	8.20	Macvlan	network

As	you	can	see,	Docker	is	pretty	flexible	when	it	comes	to	networking.	If	your
needs	are	more	complex	and	cannot	be	addressed	by	 the	options	we	discussed,
you	can	write	your	own	network	driver	plugin	or	use	 readily	available	plugins
such	as	Weave	Net	or	Flannel.

Chapter	9

Container	Orchestration

Managing	 a	 handful	 of	 containers	 is	 completely	 different	 from	 managing
production-scale	containers,	which	may	number	in	from	hundreds	to	thousands.
To	 support	 container	 management,	 we	 need	 an	 easy	 way	 of	 deploying	 and
handling	these	containers	at	scale.	This	is	what	is	called	container	orchestration.
In	 this	chapter,	we	 look	 into	a	 few	of	 the	options	available	 in	 the	 industry	and
cover	the	basics	of	how	each	inherently	works.	Container	orchestration	is	a	fast-
changing	area,	so	look	at	the	provided	links	for	the	latest	developments	once	you
understand	how	these	technologies	work	and	the	key	differences	between	them.
The	 good	 news	 is	 that	 there	 are	many	 options	 in	 the	 container	 orchestration

space.	The	flip	side,	of	course,	is	that	determining	which	tool	is	the	best	fit	for
your	environment	will	not	be	an	easy	decision.	Here	are	several	of	 the	popular
options	that	are	being	used	extensively	in	the	industry:

•	Kubernetes

•	Mesos	+	Marathon

•	Docker	Swarm

We	cover	these	options	throughout	the	next	several	sections.

Kubernetes
Kubernetes	 is	 an	 open	 source	 project	 led	 by	 Google.	 Google	 has	 extensive
experience	in	managing	and	deploying	containers	at	scale.	Kubernetes	is	one	of
the	 orchestration	 engines	 that	 helps	 you	 run	 your	 containerized	 applications
where	and	when	you	want	by	providing	the	resources	and	capabilities	they	need,
as	shown	in	Figure	9.1.
Let’s	look	at	the	major	components	of	this	orchestration	engine.

Figure	9.1	Kubernetes’s	major	components

Kubectl
Kubernetes	has	a	command-line	 interface	called	kubectl.	 It	 is	used	 for	 running
commands	and	interacting	with	Kubernetes	clusters.

Master	Node
The	master	 is	 the	brain	of	Kubernetes.	 It	coordinates	 the	cluster	activities	with
the	 help	 of	 some	 supporting	 services.	 It	 has	 an	API	 server,	 a	 scheduler,	 and	 a
replication	 controller.	 They	manage	 all	 activities—scheduling	 and	maintaining
applications’	desired	state,	scaling	up	and	down,	and	so	on.

API	Server
The	 API	 server	 is	 responsible	 for	 exposing	 Representational	 State	 Transfer
(REST)	 APIs	 to	 interact	 with	 the	 Kubernetes	 cluster.	 All	 external
communications	 that	 happen	 between	 the	 client	 (kubectl)	 and	 the	 Kubernetes
cluster	is	handled	by	the	API	server.	Additionally,	cluster-wide	communications
between	worker	nodes	and	the	master	is	also	handled	by	the	API	server.	This	is
also	 the	 only	 component	 that	 talks	 to	 the	 distributed	 key-value	 store	 (etcd)	 to
store	the	state	of	the	objects.

In	Kubernetes	terminology,	we	use	objects	to	describe	what	we	want	from	the
cluster	or	what	state	we	want	the	cluster	to	be	in.	For	example,	an	object	could
be	 the	 applications	 you	want	 to	 run	 in	 the	 cluster,	 how	many	 instances	 of	 the
application	 you	want	 in	 the	 cluster	 at	 any	 given	 time,	 or	 how	 you	want	 your
applications	to	communicate	with	each	other.
Let’s	take	an	example	of	how	the	API	server	handles	requests.	Say	we	issue	a

command	to	run	a	Tomcat	container	and	have	three	instances	of	Tomcat	running
in	the	cluster:
Click	here	to	view	code	image

kubectl	run	myTomcat	--image=Tomcat	--replicas=3

What	 happens	 behind	 the	 scenes	 is	 that	 kubectl	 submits	 our	 “intent,”	 or
request,	to	run	three	instances	of	Tomcat	server	in	the	cluster	to	the	API	server.
The	 API	 server	 then	 works	 with	 the	 scheduler	 and	 replication	 controller
components	to	execute	our	request	and	brings	the	cluster	to	the	desired	state.

Scheduler
Kubernetes	scheduler	is	a	component	that	is	responsible	for	placing	(scheduling
to	run)	the	containers	in	the	cluster	nodes.	It	does	this	by	creating	pods,	the	basic
units	of	scheduling	in	Kubernetes.	You	can	imagine	a	pod	as	a	logical	host	with
separate	namespace	where	one	or	more	 containers	 live.	All	 the	 containers	 live
inside	a	pod	and	share	a	pod’s	namespace.
When	 a	 request	 is	 submitted	 to	 the	 Kubernetes	 API	 server,	 the	 API	 server

works	with	the	scheduler	to	place	the	pods	in	the	cluster	nodes.	Before	placing	a
pod	on	a	worker	node,	the	scheduler	checks	various	criteria:

•	Which	nodes	have	sufficient	resources,	such	as	CPU	and	memory,	to	run	the
containers	in	the	pod

•	Whether	the	node	has	sufficient	ports	open,	as	requested	by	the	pod

•	Where	 to	place	 the	pod	such	 that	 it	 is	 close	enough	 in	 the	cluster	 to	avoid
latency	issues	(node	affinity)

•	Whether	the	pods	are	distributed	in	the	cluster	to	support	high	availability

As	you	can	 see,	 the	 scheduler	has	 to	make	a	 smart,	 informed	decision	about
where	 to	 place	 the	 pods	 in	 the	 cluster.	 And	 that	 is	 one	 of	 the	 Kubernetes
scheduler’s	 key	 responsibilities.	 It	 reads	 data	 from	 the	 pods	 that	 describe	 the
pod’s	policies	(required	amount	of	CPU,	memory,	high	availability	needs,	node

affinity,	 etc.)	 and	 runs	 its	 own	 algorithms	 to	 arrive	 at	 a	 best	 possible	 node	 to
place	the	pod.
Here’s	 a	 typical	 process	 that	 the	 Kubernetes	 scheduler	 goes	 through	 before

making	a	decision	on	where	to	place	a	given	pod:

1.	Scheduler	reads	the	pod’s	needs	in	terms	of	resources,	node	affinity,	and	so
on,	and	inspects	 the	list	of	available	nodes	by	pulling	the	information	from
the	etcd	database.	It	carefully	filters	out	any	node(s)	that	does	not	meet	the
pod’s	policies	/	requirements	at	that	time.

For	instance,	let’s	say	a	node	has	12G	memory	and	is	running	a	pod	that	is
already	 using	 8G	 RAM.	 The	 leftover	 memory	 in	 this	 node	 is	 4G.	 If	 the
scheduler	is	looking	for	a	node	that	has	at	least	8G	RAM	to	schedule	a	pod
to	 run,	 then	 this	 node	 will	 be	 excluded,	 as	 it	 does	 not	 have	 the	 required
amount	of	RAM	to	run	the	given	pod.

2.	Nodes	that	got	past	step	1	are	analyzed	carefully	by	Kubernetes.	It	follows	a
set	 of	 criteria	 to	 choose	 the	 best	 one	 from	 a	 list	 of	 qualifying	 nodes.	 For
example,	if	an	application	has	two	pods,	A	and	B,	you	don’t	want	both	to	be
scheduled	to	run	on	the	same	node	because	if	 that	node	goes	down,	 then	it
may	 affect	 the	 application	 availability,	 especially	 in	 the	 case	 of
microservices.

Another	example	would	be	replication.	Here	you	don’t	want	pod	replicas	to
be	 scheduled	on	 the	 same	node	 for	 the	 same	 reason	 (impacts	 availability).
Many	such	policies	are	taken	into	account	before	Kubernetes	comes	up	with
the	best	possible	node	on	which	a	given	pod	should	be	scheduled	to	run.

3.	Once	the	best	node	is	selected,	the	scheduler	schedules	the	pod	to	run	on	the
chosen	node.

Kubernetes	is	a	very	pluggable	architecture.	If	you	need	a	better	scheduler	to
fit	your	business	or	organizational	needs,	you	can	plug	in	your	own	scheduler.

Replication	Controller	(Controller	Manager)
The	replication	controller’s	job	is	to	ensure	that	the	intended	or	desired	number
of	pod	replicas	are	running	in	the	cluster	at	any	given	time.	Let’s	say	we	request
Kubernetes	 to	 run	 three	 instances	 of	 the	 Tomcat	 container	 in	 the	 cluster.
Kubernetes	 creates	 three	 pods	 and	 schedules	 it	 to	 run	 in	 the	 cluster.	 It	 goes
through	 the	 scheduling	process	 and	 picks	 up	 the	 best	 nodes	 to	 run	 those	 three
pods.	Now	 suppose	 one	 of	 the	 nodes	 that	 runs	 the	 Tomcat	 pod	 dies	 for	 some

reason.	 This	 introduces	 a	 delta	 between	 the	 desired	 number	 of	 pods	 we	 want
running	in	the	cluster	and	the	actual	number	of	pods	running.	Given	 this	delta,
the	 replication	 controller	will	 kick	 in	 and	 request	 the	Kubernetes	 scheduler	 to
spin	up	another	instance	of	the	Tomcat	pod	somewhere	in	the	cluster	along	with
all	the	other	pods	running	on	that	machine.
Additionally,	 let’s	 say	 you	 don’t	 need	 three	 instances	 of	 the	 Tomcat	 pod

running	in	the	cluster.	Maybe	your	application’s	time	has	passed	and	you	want	to
cut	down	on	the	resources	because	you	are	expecting	less	 traffic.	You	may	run
the	same	command	with	an	adjusted	number	of	pods	replicas:
Click	here	to	view	code	image

kubectl	run	myTomcat	--image=tomcat	--replicas=2

The	 replication	 controller	will	 again	kick	 in	 and	kill	 the	 excess	pods,	 one	 in
this	case,	running	in	the	cluster	to	maintain	the	desired	state.

Worker	Nodes
Worker	nodes	are	where	the	pods	are	scheduled	to	run.	An	agent	called	kubelet
runs	inside	each	worker	node.	Kubelet	serves	as	 the	single	point	of	contact	 for
each	 worker	 node.	 It	 is	 responsible	 to	 get	 “work”	 from	 the	 master	 node	 and
execute	the	work	in	the	worker	node.	Work	here	is	the	pod	or	pods	that	need	to
be	 executed	 in	 the	 worker	 node.	 Typically,	 the	 scheduler	 component	 in	 the
master	node	uses	an	API	server	to	provide	pod	details	to	kubelet.	After	receiving
the	work	from	the	master	node,	it	ensures	that	the	pods	are	successfully	launched
in	the	nodes.
Kubelet	is	also	responsible	for	reporting	both	the	status	of	the	node—its	health,

resource	availability,	and	so	on—and	the	status	of	each	pod	running	in	the	node.
Kubelet	stores	these	statistics	in	the	etcd	database	via	the	API	server.	This	data,
available	 in	 the	etcd	database,	 serves	 as	 the	 source	 for	 the	 scheduler	 to	decide
which	nodes	are	available	(as	well	as	what	resources	are	available	in	each	node)
for	scheduling	a	pod.	This	data	is	also	leveraged	by	the	replication	controller	to
decide	whether	 the	desired	number	of	 replicas	 for	 a	 service	 are	 running	 in	 the
cluster.	If	the	desired	number	of	replicas	are	not	running	the	cluster,	then	it	steps
in	to	match	the	desired	state.

Pods
Kubernetes	pods	are	dynamic.	In	other	words,	 they	are	created	as	needed;	they
can	be	moved	to	another	node	because	of	a	node	failure,	they	may	be	scaled	up
by	the	replication	controller	to	handle	more	traffic,	or	they	can	be	scaled	down	to

conserve	 some	 resources.	 Let’s	 discuss	 this	 topic	 with	 a	 concrete	 example	 to
make	it	clear.

Example:	Kubernetes	Cluster
Let’s	 assume	 that	 we	 have	 three	 instances	 of	 MySQL	 pods	 running	 in	 our
Kubernetes	cluster	as	shown	in	Figure	9.2.

Figure	9.2	Three	MySQL	pods	running	in	our	Kubernetes	cluster

Pods	can	have	metadata	 to	describe	 itself.	 In	 the	 figure,	you	can	see	 that	 the
MySQL	pods	have	a	label,	app=MySQL,	and	a	port,	3306.	You	see	that	Pods	1,
2,	and	3	are	all	 tagged	or	 labeled	exactly	 the	same	way.	By	doing	 this,	we	are
creating	 a	 logical	 set	 of	 “related”	 pods	 that	 offer	 a	 service	 collectively	 in	 a
cluster.	 In	 this	 case,	 those	 three	 pods	 are	 offering	 a	 database	 service	 to	 its
consumers.
Let’s	 run	 through	 a	 traditional	 three-tier	 application	 use	 case	 in	 which	 an

application	server	 such	 as	Apache	Tomcat	 (Consumer	 1)	 is	 trying	 to	 pull	 data
from	 the	 MySQL	 database.	 The	 consumer’s	 challenge	 with	 a	 microservices
architecture	 is	 knowing	 where	 the	 MySQL	 pod	 is.	 The	 nodes	 on	 which	 the
MySQL	pod	live	are	not	static,	as	we	saw	earlier.	The	challenge,	then,	is	locating
these	 pods	 reliably	 and	 being	 able	 to	 communicate	 with	 them.	 That’s	 where
Kubernetes	Services	comes	into	the	picture.

Kubernetes	Services	 form	an	abstraction	 layer	 that	provides	a	single	point	of
entry	for	client	requests	through	a	related	set	of	pods.	In	other	words,	we	could
say	 that	 a	 service	 front	 ends	 a	 bunch	 of	 related	 backend	 pods.	 This	 is	 a	 very
powerful	 abstraction,	 because	 now	 the	 location	 of	 the	 backend	 pods	 becomes
irrelevant	to	the	consumers.	Consumers	can	simply	reach	out	to	the	service,	and
each	 service	 has	 a	 virtual	 IP	 address	 and	 a	 port	 that	 does	 not	 change	 for	 the
lifetime	of	the	service.	In	short,	Kubernetes	Services	enable	communication	to	a
collection	of	related	pods	by	keeping	track	of	what	pods	make	up	a	service.
Plenty	 of	 documentation	 is	 available	 to	 help	 you	 install	 and	 configure

Kubernetes:	https://Kubernetes.io.	The	purpose	of	covering	 these	 topics	here	 is
to	 explain	 the	 concepts.	 You	 should	 always	 refer	 to	 the	 latest	 online
documentation	for	installation	and	configuration.

Apache	Mesos	and	Marathon
Apache	 Mesos	 is	 an	 open	 source	 containers	 orchestration	 framework	 that	 is
proven	 to	work	well	 in	 large-scale	 production	 environments.	Mesos	 is	 like	 an
operating	 system	 kernel	 that	 manages	 resources	 in	 a	 cluster	 of	 machines.	 It
works	 in	a	master/slave-based	architecture.	By	 itself,	Mesos	manages	only	 the
cluster	 resources;	 it’s	 the	 job	 of	 the	 frameworks,	 which	 sit	 atop	 Mesos,	 to
schedule	 tasks	 in	 the	 cluster.	 There	 are	 many	 frameworks	 available,	 the	 best
known	 of	 which	 include	 Marathon,	 Hadoop,	 and	 Chronos.	 We	 focus	 on
Marathon	in	this	chapter.
The	 Mesos	 architecture	 consists	 of	 masters,	 slaves	 (or	 agents),	 and

frameworks,	 as	 shown	 in	 Figure	 9.3.	 Let’s	 look	 at	 the	major	 components	 that
make	up	Mesos.

https://Kubernetes.io

Figure	9.3	Mesos	architecture

Mesos	Master
The	Mesos	master	daemon	runs	on	a	master	node.	This	daemon	 is	 responsible
for	managing	the	agent	daemons	running	on	each	cluster	node;	that	is,	the	master
daemon	is	the	one	that	provides	work	(tasks)	to	the	agent	daemons.	The	master
daemon	 is	 also	 responsible	 for	 serving	 frameworks	 that	 consume	 services
(computing	 power	 such	 as	 CPU,	 memory,	 network,	 disk	 resources)	 from	 the
Mesos	 cluster.	Any	number	of	 frameworks	 can	 run	on	 top	 of	 the	 same	Mesos
cluster.	Frameworks	 are	 the	 entities	 that	 bring	 in	 tasks	 to	 be	 run	 in	 the	Mesos
cluster.	Tasks	 the	frameworks	want	 to	 run	 in	 the	cluster	get	 to	 the	agent	nodes
through	the	master	and	get	executed	on	the	agent	nodes.
The	job	of	the	Mesos	master	is	to	enable	sharing	of	cluster	resources	such	as

CPU	and	memory	to	the	frameworks	that	are	waiting	to	run	their	tasks.	It	does
this	by	sharing	the	cluster	resources	in	what	are	called	offers	in	the	Mesos	world.
Offers	 contain	 details	 such	 as	 amount	 of	 RAM	 and	 number	 of	 CPU	 cycles
available	to	execute	a	task.	The	offers	are	sent	to	the	registered	frameworks,	and
the	frameworks	have	complete	freedom	to	accept	or	reject	them.

Offers	 are	 nothing	 but	 a	 way	 for	 a	 Mesos	 master	 to	 let	 the	 registered
frameworks	know	of	available	resources	in	the	cluster.	As	an	example,	an	offer
can	include	details	such	as	“12G	memory,	8	core	CPU	cycles	are	available	to	be
used.”	A	 framework	 that	 receives	 an	 offer	 inspects	 the	 offer	 received	 and	 the
tasks	 in	 hand	 to	 be	 executed.	 If	 the	 task	 can	 be	 executed	 by	 using	 the	 offer
received,	then	the	framework	accepts	it;	otherwise,	the	offer	is	rejected.
The	fact	that	any	number	of	frameworks	can	consume	resources	from	the	same

Mesos	 cluster	 introduces	 challenges	 such	 as	 which	 framework	 gets	 what
percentage	 of	 resources	 from	 the	 cluster.	 Mesos	 handles	 resource	 allocation
elegantly	 by	 making	 it	 completely	 configurable	 through	 policies	 that	 can	 be
defined.	 It’s	 up	 to	 the	 cluster	 administrator	 to	 define	 how	many	 resources	 are
allocated	 to	 a	 given	 framework	 based	 on	 organizational	 priorities	 and/or	 the
criticality	of	the	tasks	that	a	given	framework	may	run	in	the	Mesos	cluster.

Agents
Agents	are	the	worker	nodes	where	the	actual	tasks	run.	A	slave	daemon	runs	on
each	 of	 the	 worker	 nodes.	 This	 daemon	 is	 responsible	 for	 collecting	 and
reporting	statistics	to	the	Mesos	master.
Say	 your	 machine	 has	 8GB	 RAM	 and	 4	 core	 CPU	 cycles	 available.	 This

information	will	be	sent	from	the	agent	to	the	Mesos	master,	which	forwards	the
offers	upstream	to	the	registered	frameworks.	Tasks	that	the	frameworks	request
actually	run	in	these	worker	nodes.	Agents	get	 the	work	(task	to	execute)	from
the	Mesos	 master.	 Once	 they	 receive	 the	 task,	 they	 launch	 the	 task	 inside	 an
executor.
An	 executor	 is	 simply	 a	 process	 or	 a	 container	 that	 can	 execute	 shell

commands	 or	 Docker	 containers	 and	 other	 processes.	 Mesos	 provides	 simple
executors	 that	 can	 execute	 shell	 commands	 and	 Docker	 containers;	 however,
most	frameworks,	such	as	Marathon,	ship	with	their	own	executors,	which	offer
more	capabilities	than	the	ones	that	come	with	the	default	Mesos	executor.

Frameworks
Frameworks	are	the	consumers	of	cluster	resources.	As	we	saw	earlier,	Mesos	by
itself	only	manages	the	cluster’s	resources;	it	is	the	frameworks	that	run	the	tasks
in	 the	 cluster.	 Frameworks	 have	 two	major	 components:	 the	 scheduler,	 which
registers	 itself	 with	 the	 Mesos	 master	 and	 is	 responsible	 for	 looking	 at	 an
incoming	 offer	 and	making	 a	 decision	 whether	 to	 accept	 or	 reject	 it;	 and	 the
executor,	which	actually	runs	the	tasks	 in	 the	agents.	 If	 the	frameworks	choose

not	to	provide	their	own	executor,	they	can	use	the	default	executor	that	comes
with	Mesos.

Example:	Marathon	Framework
Let’s	 say	we	want	 to	deploy	 three	 instances	of	a	catalog	microservice.	Here	 is
how	we	would	describe	this	requirement	and	hand	it	off	to	Marathon:
Click	here	to	view	code	image

{
	"id":	"catalog-svc",
	"cpus":	0.5,
	"mem":	8.0,
	"instances":	3,
	"container":	{
	"type":	"DOCKER",
	"Docker":	{
	"image":	"helpdesk/catalog-svc",
	"network":	"BRIDGE",
	"portMappings":	[
	{"containerPort":	80,	"hostPort":	80,	"protocol":	"tcp"}
]
	}
	}
}

Notice	your	Docker	networking	knowledge	coming	in	handy	here.	According
to	this	JSON,	we	need	three	instances	of	the	catalog	microservice	running	in	the
cluster.	The	container	section	explains	what	type	of	container	we	need—in	this
case,	 the	Docker	container.	That	section	also	explains	what	 image	will	be	used
inside	 the	 Docker	 container	 as	 well	 as	 the	 ports	 that	 need	 to	 be	 exposed.	 In
addition	 to	 all	 of	 these	 details,	 this	 file	 also	 explains	 how	much	memory	 and
CPU	are	required	for	each	container	instance.
Here’s	how	we	can	 submit	 this	 JSON	 file	 to	Marathon,	 assuming	 this	 JSON

file	is	saved	as	application.json:
Click	here	to	view	code	image

curl	-X	POST	http://hostip:port/v2/apps	\
-d	@application.JSON	\
-H	"Content-type:	application/JSON"

When	we	hand	this	off	to	Marathon,	Marathon	waits	for	offers	from	the	Mesos

http://hostip:port/v2/apps

master	(note	that	Marathon	does	not	store	offer	history).	As	soon	as	it	receives
an	offer	 that	 fulfills	 the	 request,	 it	 hands	 off	 the	 request	 to	Mesos	 so	 that	 the
executor	 process	 inside	 the	 agent	 can	 launch	 these	 containers.	 Recall	 that	 we
instructed	Marathon	to	launch	three	instances	of	the	catalog	microservice.	If	for
any	reason	that	cluster	does	not	have	three	instances	of	the	catalog	microservice,
Marathon	will	work	with	Mesos	to	spin	up	additional	containers	to	ensure	three
instances	are	always	running	in	this	cluster.
It	is	easy	to	scale	up	or	scale	down	the	instances	running	in	the	cluster.	It	is	a

matter	of	submitting	a	new	JSON	file	with	the	required	number	of	instances.	For
details	 on	 installation	 and	 configuration,	 refer	 to	 the	 Mesos	 project	 online	 at
https://mesosphere.com.

Docker	Swarm
Docker	 Swarm	 is	 a	 native	 container	 orchestration	 engine	 from	 Docker	 itself.
Swarm	 is	 simply	 a	 group	 of	 machines	 (Docker	 engines)	 running	 Docker
containers	with	swarm	mode	 turned	on.	Swarm	effectively	manages	 the	cluster
by	 instructing	 the	 cluster	 nodes	 to	 run	 containers.	 Let’s	 look	 at	 the	 main
concepts.

Nodes
A	node,	in	simple	terms,	is	a	Docker	engine	that’s	part	of	the	Swarm	cluster.	The
cluster	 has	 worker	 nodes	 as	 well	 as	 Swarm	 manager	 nodes.	 Swarm	 manager
nodes	are	the	brain	of	the	Swarm	cluster.	They	are	responsible	for	managing	the
Swarm	cluster	by	instructing	the	worker	nodes	to	execute	containers.
The	 manager	 is	 not	 deployed	 as	 a	 single	 node;	 rather,	 multiple	 nodes	 are

typically	deployed	in	odd	numbers	such	as	three,	five,	and	seven	to	avoid	being	a
single	 point	 of	 failure.	 Manager	 nodes	 run	 what’s	 called	 a	 raft	 consensus
algorithm	to	“elect”	a	single	leader.	In	the	event	a	leader	goes	down,	one	of	the
followers	will	be	elected	as	a	new	leader,	thus	avoiding	disruption	or	any	kind	of
a	system	failure.

Services
A	 service	 is	 simply	 a	 definition	 of	 what	 needs	 to	 be	 executed	 in	 the	 cluster
nodes.	A	service	definition	consists	of	the	following:

•	Image	to	run	in	the	container

•	Any	commands	that	need	to	be	run	inside	the	container

https://mesosphere.com

•	Replicas	or	number	of	instances	of	the	running	container

Task
Task	is	the	basic	unit	of	scheduling	in	Swarm.	It	contains	the	Docker	container
and	 the	 commands	 that	 need	 to	 be	 run	 in	 the	 container.	 When	 the	 Swarm
manager	gets	a	request	to	spin	up	a	service,	 the	service	simply	indicates	which
container	is	to	be	launched	and	the	number	of	 instances	that	need	to	run	in	the
cluster.	 The	 manager	 node	 then	 assigns	 the	 task	 (container	 to	 launch	 and
commands	to	run	in	the	container)	to	the	worker	nodes	and	lets	the	worker	nodes
launch	 those	 containers.	 It	 also	 ensures	 that	 the	 desired	 number	 of	 replicas
(instances)	are	launched	in	the	cluster.
As	 end	 users,	 we	 simply	 mention	 our	 intent	 or	 the	 desired	 state	 of	 an

application,	and	it’s	the	job	of	the	Swarm	manager	to	ensure	the	desired	state	of
the	application	is	achieved	and	maintained.

Example:	Swarm	Cluster
Let’s	 get	 our	 hands	 dirty	 and	 take	 a	 look	 at	 how	 to	 create	 a	 simple	 Swarm
cluster.	The	good	news	 is	 that	 there’s	no	additional	software	setup	required	for
Swarm	as	long	as	you	have	Docker	installed.	As	of	this	writing,	Docker’s	latest
version	is	17.06,	and	that’s	what	we’ll	use	to	explore	Swarm.

Swarm	Cluster	Setup
In	this	example,	we	set	up	a	two-node	Swarm	cluster	(one	manager,	one	worker).
On	the	node	that	we	want	as	Swarm	manager,	we	run	the	following	command	to
initialize	a	Swarm	cluster:
Click	here	to	view	code	image

docker	swarm	init	--listen-addr	10.88.237.217:2377

In	 this	 command,	 10.88.237.217	 is	 the	 interface	 IP	 address	 of	 the	 machine
where	the	command	is	executed,	and	2377	is	the	default	port	on	which	the	node
listens	for	Swarm	manager	traffic.
As	you	can	see	in	Figure	9.4,	the	command	has	initialized	a	Swarm	cluster.

Figure	9.4	Swarm	cluster	initialized

At	this	stage,	there	are	no	worker	nodes	in	the	Swarm	cluster.	All	we	have	is
the	Swarm	manager.	Let’s	list	the	nodes	in	the	Swarm	cluster	to	quickly	see	what
nodes	are	there:

docker	node	ls

As	you	can	see	in	Figure	9.5,	the	Swarm	master	is	the	only	node	in	the	cluster.

Figure	9.5	Swarm	master	is	only	node	in	the	cluster

To	add	a	worker	node	to	this	Swarm	cluster,	we	go	to	a	node	that	has	Docker
running	and	run	a	swarm	join	command	to	participate	in	the	Swarm	cluster:
Click	here	to	view	code	image

docker	swarm	join	--token	<tokenID>	10.88.237.217:2377

As	you	can	see,	to	make	a	node	a	worker	node,	all	you	have	to	do	is	run	the
swarm	join	command	to	provide	the	master’s	IP	and	port	details,	as	shown	in
Figure	9.6.

Figure	9.6	The	swarm	join	command	providing	master’s	IP	and	port	details

Now	let’s	look	at	the	nodes	participating	in	the	cluster:

docker	node	ls

You	should	now	see	one	manager	and	one	worker	node	in	the	Swarm	cluster,
as	shown	in	Figure	9.7.

Figure	9.7	One	manager	and	one	worker	node	in	Swarm	cluster

Service	Creation
To	create	a	Tomcat	service	in	Swarm	and	deploy	it	in	the	cluster,	all	we	have	to
do	 is	 first	 establish	what	 image	 should	be	 used	 in	 the	 container	 and	 then	how
many	instances	(replicas)	are	needed	to	run	in	the	cluster.
In	 Figure	 9.8,	 you	 can	 see	 that	 we	 start	 with	 a	 clean	 slate	 with	 no	 running

containers	(indicated	by	docker	ps	–a	 returning	0	entries	 in	 the	first	 line).
We	 then	 create	 a	 service	 by	 passing	 in	 the	Docker	 image	 (tomcat	:	7.0,
which	is	already	in	the	repository)	and	asking	Swarm	manager	to	create	just	one
instance	(indicated	by	--replicas	1).

Figure	9.8	Starting	with	a	clean	slate

Once	we	pass	in	these	parameters,	we	have	the	Tomcat	instance	spun	up	in	the
cluster	 (indicated	 by	 docker	 ps	 –a	 following	 the	 service	 creation
command).	Finally,	running	docker	service	ls	is	a	quick	way	to	list	the
service	 that	 we	 just	 launched,	 which	 indicates	 that	 the	 service	 called
TomcatService	is	up	and	running	and	that	the	desired	number	of	replicas	are	met.

Scale	Up	and	Scale	Down

First,	scale	up	the	service	by	asking	Swarm	manager	to	increase	the	number	of
Tomcat	replicas:
Click	here	to	view	code	image

docker	service	scale	service	TomcatService=2

It’ll	take	a	bit	of	time	to	launch	the	additional	container	in	the	cluster,	as	shown
in	Figure	9.9.

Figure	 9.9	Scaling	 up	 the	 service	 by	 asking	 Swarm	 manager	 to	 increase	 the
number	of	Tomcat	replicas

Scaling	down	the	service	is	as	simple	as	running	this	command:
Click	here	to	view	code	image

docker	service	scale	TomcatService=1

For	more	details	and	latest	configuration	options,	visit	the	online	project	page:
https://docs.docker.com.

Service	Discovery
We	 have	 talked	 a	 lot	 about	 service	 discovery,	 but	 let’s	 take	 a	 step	 back	 and
understand	what	it	is	and	why	it’s	critical.	Simply	put,	service	discovery	is	about
locating	where	a	particular	 service	 is	 running—for	example,	“Where	 is	 service
X?”	where	X	may	be	 a	database	 server,	 cache	 server,	 or	 any	other	 application
server.
In	 the	 good	 old	 days,	 when	 we	 had	 physical	 machines	 to	 deploy	 our

applications,	 services	 running	 on	machines	 used	 to	 be	 named	 appropriately	 to
represent	 the	services	 running	on	 them.	For	example,	a	database	server	 for	 the
helpdesk	application	 running	on	 a	physical	machine	would	 possibly	 be	 named
“helpdesk-db.domain.com.”	 Now	 when	 the	 client—say,	 an	 application	 server
such	 as	 Tomcat—wants	 to	 consume	 the	 database,	 it	 typically	 gets	 configured

https://docs.docker.com
http://helpdesk-db.domain.com

using	properties	or	configuration	files	on	the	database	server.
Yet	 when	 the	 need	 for	 quickly	 spinning	 up	 machines	 on	 the	 fly	 became

widespread,	 virtual	 machines	 (VMs)	 emerged.	 With	 VMs,	 what	 was	 once
difficult	 to	 do	 with	 physical	 machines,	 such	 as	 dynamically	 adding	 nodes	 to
handle	additional	 load,	became	easy	and	very	approachable.	As	a	 result,	cloud
technologies	 became	 popular.	Now,	when	we	 have	multiple	 servers	 offering	 a
single	service	(e.g.,	a	database	cluster),	how	do	the	clients	know	which	server	to
talk	to?	They	use	a	load	balancer	such	as	NGINX	or	HAProxy	and	configuring
the	load	balancer	with	the	nodes	representing	a	given	service.
For	example,	let’s	say	we	have	a	load	balancer	configured	to	balance	the	load

between	two	Tomcat	servers.	As	the	traffic	increases,	a	new	Tomcat	VM	may	be
spun	up;	using	 scripts/automation,	 the	 load	 balancer	will	 be	 updated	 to	 reflect
that	a	new	Tomcat	VM	was	added.	With	this	new	configuration	in	place,	the	load
balancer	 knows	 that	 an	 additional	 server	 representing	 a	 Tomcat	 service	 is	 in
place,	and	it	can	direct	traffic	to	that	instance.	Client	applications	don’t	need	to
know	 that	 a	 new	VM	has	been	 added	 to	 the	Tomcat	 service,	 nor	 do	 they	 care
about	details	such	as	where	that	VM	is	running,	its	IP	address,	and	so	on.	Client
applications	 continue	 to	 talk	 to	 the	 load	 balancer,	 which	 in	 turn	 abstracts	 the
changes	in	the	Tomcat	service	(e.g.,	adding	or	removing	nodes).
Fast-forward	to	today.	We	live	in	the	era	of	containers	and	microservices.	With

containers,	the	problem	of	discovering	where	a	given	service	is	located	is	going
to	be	more	difficult	than	other	cases.	Containers	can	be	both	launched	and	killed
extremely	 quickly,	 and	 their	 location	 is	 not	 static,	 making	 it	 difficult	 for	 the
clients	to	know	where	a	given	service	is	located	in	the	cluster.	The	good	news	is
that	there	are	a	good	number	of	tools	in	the	service	discovery	space	that	can	be
leveraged	according	to	our	needs.
Before	 we	 look	 at	 the	 many	 tools	 available	 for	 service	 discovery,	 let’s

understand	a	couple	of	service	discovery	patterns.	There	are	at	least	two	ways	to
do	service	discovery,	depending	on	where	it	occurs:

•	Client-side	 service	discovery.	 Service	 registry	 is	 a	 tool	 or	 a	 database	 that
contains	the	list	of	all	services,	details	about	where	those	services	reside	(IP
address,	port),	and	so	on,	as	shown	in	Figure	9.10.	The	locations	of	the	actual
services	 gets	 registered	 with	 the	 registry	 when	 these	 services	 come	 up.
Likewise,	 the	 entries	 in	 the	 registry	 are	 removed	 as	 these	 services	 are
terminated.	 Outside	 a	 service	 start	 or	 stop,	 some	 kind	 of	 a	 heartbeat
mechanism	must	be	in	place	to	ensure	that	the	registered	services	are	up	and
healthy.

Figure	9.10	Client-side	service	discovery

The	major	drawback	of	this	approach	is	that	the	client	has	to	know	about	the
service	 registry,	 which	 puts	 the	 responsibility	 on	 the	 client	 applications	 to
discover	the	services	before	they	can	communicate	with	the	service.
•	Server-side	service	discovery.	 In	 the	case	of	server-side	service	discovery,
the	client	can	directly	send	a	 request	 to	an	API	gateway	or	a	 load	balancer
and	not	worry	about	connecting	to	the	right	service.	The	load	balancer	does
the	heavy	lifting	of	managing	the	service	registry,	querying	the	registry	to	get
the	location	of	services	to	handle	incoming	requests,	and	performing	a	load-
balancing	 operation	 across	 multiple	 instances	 of	 the	 service,	 as	 shown	 in
Figure	9.11.	A	 classic	 example	 of	 this	 pattern	 is	 the	 popular	Amazon	ELB
(elastic	load	balancers).

With	Amazon	Web	Services,	 let’s	say	we	set	up	a	 four-node	EC2	(Amazon
Elastic	Compute	Cloud)	cluster	 for	an	application	 tier	 (Tomcat).	 In	order	 to
split	 the	 traffic	 between	 these	 four	 EC2	 Tomcat	 instances,	 we	 have	 to
add/register	 these	 instances	 to	 an	 ELB	 by	 providing	 details	 such	 as	 the
instance	name,	port	on	which	the	service	is	running,	mechanism	to	be	used	to
ensure	 these	 services	 are	 healthy	 (ELB	 should	 be	 used	 for	 heartbeat/health
checks),	 and	 frequency	 at	which	 the	health	 check	 should	happen.	Once	 the

configuration	is	done	in	the	ELB,	the	ELB	does	the	heavy	lifting	of	handling
the	 incoming	 requests	 and	 routing	 the	 requests	 to	 the	 appropriate	 Tomcat
instance.

Figure	9.11	Server-side	service	discovery

Microservices	and	service	discovery	go	hand	in	hand.	In	fact,	there	are	many
open	 source	 tools	 for	 service	 discovery,	 including	 Consul	 (HashiCorp),
Zookeeper	 (Apache),	 etcd,	 SmartStack	 (AirBnB),	 Eureka	 (Netflix),	 and
SkyDNS.	 These	 tools	 have	 a	 lot	 of	 capabilities	 in	 common.	 They	 are	 mainly
differentiated	 in	 terms	 of	 the	 footprint	 (light	 versus	 heavy)	 and	 protocols
supported	to	query	services	(DNS,	HTTP/TCP,	etc.).

Service	Registry
Service	 registry	 is	 like	 a	 Yellow	 Pages	 for	 the	 microservices	 running	 in	 the
environment.	 It	has	details	 about	where	a	given	microservice	 is	 running	 in	 the
cluster	 (e.g.,	 host	 and	 port).	 As	 we	 know,	 microservices	 can	 come	 up	 (new
instances	may	 be	 spun	 up	 for	 scaling)	 or	 go	 down	 in	 the	 event	 of	 failure	 and
eventually	 may	 be	 restarted	 in	 another	 node.	 What	 this	 means	 is	 that	 their
location	 is	 not	 static—it	may	 change.	There	 are	 at	 least	 two	 different	ways	 to
communicate	the	location	of	a	given	microservice	to	service	registry:

•	Self-registration.	This	a	process	by	which	a	given	microservice	itself	sends

its	 location	 information	 to	 service	 registry,	 as	 shown	 in	 Figure	 9.12.	 For
example,	Consul	 is	 a	 popular	 choice	 for	 service	 registry,	 and	 it	 exposes	 an
API	to	interact	with	it.	With	self-registration,	each	microservice	will	have	to
interact	 with	 the	 Consul	 API	 to	 send	 its	 whereabouts.	 According	 to
microservices’	patterns	and	best	practices,	each	microservice	should	focus	on
a	 single	 concern—one	 piece	 of	 functionality.	 However,	 forcing	 the
microservices	 to	 send	 their	 location	 information	 to	 the	 service	 registry
violates	 the	 single-concern-responsibility	 pattern.	 For	 this	 reason,	 self-
registration	is	not	a	widely	used	option.

Figure	9.12	Service	registry	self-registration

•	External	 tools,	 or	 third-party	 registration.	 Leveraging	 external	 tools	 for
service	registry	is	the	best	choice	for	a	simple	reason:	the	microservices	can
focus	on	their	core	responsibility	and	not	worry	about	sending	their	 location
information	to	a	service	registry.	It’s	a	clear	separation	of	concern;	tomorrow,
if	you	want	to	change	the	way	the	microservices	need	to	be	discovered	and
stored	 in	 the	 service	 registry,	 you	 can	 do	 it	 without	 touching	 the
microservices	code.

Let’s	 see	 how	 a	 third-party	 registration	 would	 work	 in	 the	 same	 Consul
example	 previously	 discussed.	 Registrator

(https://github.com/gliderlabs/registrator)	 is	 an	 open	 source	 component	 that
serves	 as	 a	 bridge	 between	 service	 registry	 and	 Docker	 containers.	 It
automatically	registers	and	deregisters	services	by	keeping	an	eye	on	the	Docker
containers	as	they	come	up	and	go	down.
As	 a	 Docker	 container	 comes	 up	 or	 goes	 down,	 it	 fires	 off	 events

(notifications),	 and	 any	 third-party	 tool	 can	 subscribe	 to	 these	 events	 to	 take
appropriate	actions.	Registrator	simply	watches	for	these	Docker	events	and,	like
docker	 inspect,	 inspects	 those	 containers	 to	 see	 what	 services	 they
provide.	It	then	communicates	with	any	service	registry	tool	(e.g.,	Consul,	etcd,
SkyDNS2)	and	sends	the	information	about	the	discovered	service.
In	Figure	9.13,	you	can	see	that	Registrator	is	a	component	that’s	installed	on

all	 the	worker	nodes	 that	 run	containers.	 It’s	configured	with	a	service	registry
(which	is	where	the	actual	information	about	the	services	running	in	in	cluster	is
stored)	 to	 which	 it	 sends	 information	 about	 the	 discovered	 services.	 As	 a
container	is	spun	up	or	goes	down	in	a	given	node,	Docker	fires	off	events,	and
the	Registrator	component	living	in	each	node	picks	up	those	events	and	inspects
the	containers	to	get	additional	information	about	the	services.

Figure	9.13	Registrator	installed	on	all	the	worker	nodes	that	run	containers

https://github.com/gliderlabs/registrator

This	 wraps	 up	 our	 deployment	 and	 discovery	 topics.	 We	 use	 this	 learning
extensively	in	dockerizing	our	project	in	Part	III	of	the	book.

Chapter	10

Containers	Management

Now	that	we	understand	containers	orchestration,	scaling,	and	networking,	let’s
talk	 about	 what	 happens	 when	 things	 go	 wrong.	 You	 will	 have	 potentially
hundreds	to	thousands	of	containers	running	in	the	production,	and	you	need	to
know	how	to	manage	them	effectively	and	efficiently.	To	that	end,	our	deep	dive
into	containers	concludes	by	getting	into	the	nitty	gritty	of	container	monitoring
and	management	 that	 includes	 capturing	 logs,	 collecting	 resource	metrics,	 and
using	 some	 cluster-wide	monitoring	 systems.	Let’s	 first	 understand	 the	 overall
monitoring	aspect	of	containers	and	why	it	may	be	different	from	what	already
exists	in	the	market.

Monitoring
Monitoring	 an	 environment	 with	 containers	 is	 not	 difficult,	 but	 the	 speed,
quantity,	 and	 environment	 can	 make	 it	 so.	 Legacy-wise,	 the	 monitoring	 tools
market	to	monitor	and	manage	physical	hosts,	network,	and	virtual	machines	has
matured.	Containers	 are	new;	 the	marketplace	 is	 still	 in	 the	process	of	 solving
the	 monitoring	 problem.	 Containers	 monitoring	 is	 different	 because	 of	 the
following	aspects	and	challenges:

•	 Deployment	 environment.	 An	 organization	 may	 run	 some	 containers
directly	 on	 physical	 infrastructures	 within	 its	 own	 data	 center	 and	 some
containers	 on	 virtual	 machines	 with	 a	 service	 provider	 such	 as	 AWS
Managed	Service	Partners,	which	adds	little	more	to	complexity	in	terms	of
management.

•	 Scalability	 of	 containers.	Whole	 applications	 can	 be	 run	 on	 a	 physical
machine	 or	 on	 few	 virtual	 machines.	 With	 containers,	 the	 best	 practices
dictate	one	service	per	container,	and	an	application	may	consist	of	hundreds
to	thousands	of	services,	which	means	hundreds	to	thousands	of	containers.
In	 a	 microservices	 architecture,	 application	 scaling	 requires	 auto-shrinking
and	auto-expanding	the	number	of	containers	on	the	basis	of	changing	needs.

•	 Velocity	 of	 change.	 Unlike	 physical	 hosts	 or	 virtual	 machines,	 the	 life

expectancy	 of	 a	 container	 may	 vary	 from	 a	 few	 seconds	 to	 several	 days.
When	a	task	is	finished,	the	container	goes	away.

•	Various	tools	in	use.	Although	containers	provide	speed	and	efficiency,	they
throw	simplicity	out	 the	window.	Deployment,	management,	 and	 discovery
of	the	containers	involves	a	plethora	of	tools.	For	example,	you	may	use	one
of	 several	 containers	 orchestrators,	 such	 as	Docker	 Swarm,	Kubernetes,	 or
Mesos.	You	can	specify	the	networking	configuration,	number	of	instances	of
a	container	to	spin	up,	and	so	on.	The	orchestrators	then	control	the	creation,
deletion,	 and	 management	 of	 the	 containers	 based	 on	 resource	 availability
within	 the	 hosts.	 Each	 time	 a	 new	 container	 is	 created,	 it	 gets	 a	 new	 IP
address.	With	 all	 this	 going	 on,	 it	 becomes	 very	 hard	 to	 set	 up	 the	 overall
monitoring	and	collection	of	metrics.

•	Distributed	data.	Data	must	be	collected	from	the	various	tools	and	merged
at	one	centralized	place	to	make	sense	of	it	and	find	potential	issues.	Docker
provides	 some	 capabilities	 to	 get	 these	 data	 and	 statistics	 to	 proactively
monitor	the	containers	and	overall	system.

There	are	lot	of	vendor-specific	options,	and	each	has	its	own	benefits.	Docker
has	recently	 launched	 the	 Ecosystem	Technology	 Partner	 (ETP)	 program	with
the	companies	 that	have	 integrated	 their	monitoring	 tools	with	Docker	 through
APIs.	You	can	search	for	such	partners	at	https.www.docker.com.
Let’s	 begin	 the	 discussion	 with	 available	 logging	 and	 container	 metrics

collection.	You	can	pull	this	data	to	your	existing	monitoring	tools	or	build	some
dashboards.

Logging
In	 a	 production	 environment	 that	 supports	 multiple	 applications	 on	 multiple
clusters	with	multiple	 copies	 of	 a	 running	 service,	 you	may	 have	 a	 very	 high
number	of	containers	running.	Things	do	go	wrong,	and	when	they	do,	logging
becomes	very	important	to	troubleshoot	the	issues.	For	example,	recall	that	with
microservices,	we	are	 talking	about	hundreds	 to	 thousands	of	microservices	 as
part	of	one	typical	 large-scale	application.	Docker	containers	are	well	suited	to
run	 such	 a	 high	 number	 of	 microservices	 because	 they	 offer	 the	 many
advantages	we	have	discussed.	The	question	is,	how	do	we	manage	the	logging
when	 each	 container	 is	 spitting	 everything	 that	 comes	 out	 of	 stdout	 and
stderr	into	the	logs?	How	do	we	keep	all	these	logs	in	sync	and	in	a	place	that
makes	troubleshooting	straightforward	and	efficient?

Docker,	once	again,	provides	drivers	that	simplify	our	job.	Each	driver	helps	us
get	 the	 logging	 information	 from	 the	 containers	 and	 running	 services.	 They
differ	in	the	way	they	provide	and	format	the	information	and	how	they	forward
it	 to	 different	 log	 processors.	 Example	 drivers	 include	 JSON,	 Syslog,	 Splunk,
Amazon	CloudWatch	Logs,	 and	 the	 like.	We	discuss	 these	options	 thoroughly,
but	for	more	details,	refer	to	Docker	online	documentation.
At	the	time	of	writing,	the	following	logging	drivers	are	supported:

•	json-file.	The	default	logging	driver	for	Docker	daemon.	Each	container	uses
json-file	 unless	 you	 configure	 the	 container	 or	 daemon	 to	 use	 a	 different
driver.	The	output	log	file	is	in	well-understood	JSON	format.

•	None.	Turns	off	logging.

•	 Syslog.	 Sends	 the	 log	 messages	 to	 the	 syslog	 server	 installed	 locally	 or
remotely.	As	discussed	earlier,	 you	can	modify	 the	daemon.json	 file	on	 the
host	to	set	the	log	driver	to	syslog	and	specify	options	in	the	options	section.
You	can	also	do	this	at	the	container	level.	Syslog	brings	all	the	messages	to
the	same	 location,	which	helps	 in	 troubleshooting,	but	 it	 is	not	sufficient	 to
deal	with	hundreds	of	containers,	as	in	the	case	of	microservices.

•	awslogs.	Sends	the	log	messages	to	Amazon	CloudWatch	Logs.	In	this	case,
set	the	log	driver	to	awslogs	and	specify	the	required	options.

•	Splunk.	Sends	the	log	messages	to	Splunk	using	the	HTTP	event	collector.
In	this	case,	set	the	log	driver	to	Splunk.	Splunk-token	and	splunk-url	are	the
required	 options	 you	must	 specify	 in	 the	 file	 or	 at	 the	 time	 of	 running	 the
container.

•	Journald.	Sends	the	log	messages	to	the	system	journal.	In	this	case,	set	the
log	driver	to	journald.	Log	entries	can	be	retrieved	using	journalctl	or	Docker
log	commands.

•	gcplogs.	Sends	 the	 log	messages	 to	Google	Cloud	Platform	 logging	where
you	can	search	and	analyze	these	messages.	In	this	case,	set	the	log	driver	to
gcplogs.	 You	 can	 also	 set	 several	 options	 to	 include	 more	 details	 in	 the
messages.

•	GELF.	Sends	messages	to	Graylog	Extended	Log	Format	(GELF)	endpoints
such	 as	 Logstash	 server.	 In	 this	 case,	 set	 the	 log	 driver	 to	 gelf	 along	with
various	 options.	 GELF	 is	 extensively	 used	 as	 part	 of	 ELK	 (Elasticsearch,
Logstash,	and	Kibana).

As	 mentioned	 earlier,	 json-file	 is	 the	 default	 driver.	 You	 can	 check	 this	 by
running	the	following	command:
Click	here	to	view	code	image

docker	info	|	grep	'Logging	Driver'

You	should	see	the	result	-	Logging	Driver:	json-file.
Let’s	run	an	Ubuntu	container	and	check	the	default	logging:

docker	run	-it	ubuntu:latest	sh

Open	another	terminal,	find	the	container	ID,	and	copy	it:

docker	ps

Now	 run	 the	 following	 command	 to	 find	 the	 logging	 driver	 for	 our	Ubuntu
container:
Click	here	to	view	code	image

docker	inspect	-f	'{{.HostConfig.LogConfig.Type}}'	ec5e917eb9b0

You	should	see	the	result	shown	in	Figure	10.1.

Figure	 10.1	 Using	 docker	 inspect	 to	 find	 the	 logging	 driver	 for	 our
Ubuntu	container

You	 can	 change	 the	 default	 logging	 driver	 at	 the	 daemon	 level	 or	 at	 the
container	 level.	 For	 the	 daemon	 level,	 you	 can	 modify	 the	 value	 of	 log-
driver	 in	 the	 daemon.json	 file	 located	 in	 /etc/Docker	 on	 the	 Linux	 host
machine.	The	structure	looks	like	this:
Click	here	to	view	code	image

"log-driver":
"log-opts":{	options	like	syslog	server	info,	etc.	}

For	 the	 container	 level,	 you	 can	 specify	 the	 logging	 driver	 during	 the	run
command,	as	we’ll	see	in	the	next	example.
Of	 course,	 another	 option	 is	 to	 turn	 logging	 off	 altogether.	 Let’s	 restart	 our

Ubuntu	container	with	the	none	option	and	run	the	logs	command	again.

Click	here	to	view	code	image

docker	run	-it	--log-driver	none	ubuntu:latest	sh

Let’s	run	a	couple	of	commands	at	the	sh	prompt	to	create	some	log	data,	as
shown	in	Figure	10.2.

Figure	10.2	Creating	log	data

Now	check	the	logs:
Click	here	to	view	code	image

docker	ps	//Copy	ContainerID
docker	logs	73c1b74d6091

You	can	see	that	there	is	no	logging	available,	as	it	has	been	turned	off	for	this
particular	 container.	 The	 subsequent	 containers	 have	 no	 impact	 because	 we
changed	the	setting	at	the	container	level.
Keep	in	mind	that	the	container	logging	options	we	discussed	do	not	account

for	 application	 or	 services	 messages	 that	 don’t	 pass	 messages	 through	 the
stderr	 and	stdout	 streams.	 Also,	 some	 of	 these	 drivers	 rely	 on	 services
running	on	the	host	machine,	which	is	a	little	risky.
Another	thing	to	keep	in	mind	is	that	as	the	number	of	containers	grow	within

your	application,	you	will	need	a	very	sophisticated	centralized	logging	system
that	 contains	 all	 the	 information	 starting	 from	 system	 data	 such	 as	 CPU	 and
memory	 to	 last-mile	 application	 performance	 data.	 So,	 when	 building	 the
application,	 you	 need	 to	 include	 proper	 tagging	 and	 tracking	 as	 part	 of	 your
code.	 This	 centralized	 logging	 system	 should	 include	 capabilities	 such	 as
filtering,	indexing,	categorizing,	sorting,	and	searching	to	make	application	and
containers	troubleshooting	faster	and	easier.

Metrics	Collection
In	 this	 section,	 we	 discuss	 metrics	 collection	 mechanisms	 that	 use	 the	 basic
utilities	 provided	 by	 Docker	 and	 some	 open	 source	 tools	 that	 you	 can	 use	 to

solve	 for	monitoring	 given	 the	 complexity	 of	 your	 deployment.	We	 start	with
Docker	Stats.

docker	stats
The	docker	stats	 command	 provides	 you	with	 live	 performance	 data	 for
the	containers	running	on	your	host	system	at	the	given	time:

docker	stats	[Options]	[Containers]

You	can	provide	container	IDs	for	the	specific	containers	you	are	interested	in
or	use	the	–a	option	for	all	containers.	If	you	do	not	specify	an	option,	Docker
presents	you	with	all	running	containers.
Let’s	execute	this	command:

docker	stats

Figure	10.3	shows	the	result	of	the	docker	stats	command,	which	returns
the	resource	usage	statistics.

Figure	10.3	Executing	the	docker	stats	command

Press	Ctrl+C	to	exit	the	stream.	You	can	customize	the	output	by	providing	the
desired	format	with	the	--format	option.	For	example:
Click	here	to	view	code	image

docker	stats	--format	"table	{{.Name	}}	\t	{{.ID	}}	\t	{{.CPUPerc}}	\t	{{.MemUsage}}"

You	can	include	the	following	metrics	with	the	--format	option:

•	.Name	returns	the	container	name.

•	.ID	returns	the	container	ID.

•	.CPUPrec	returns	the	CPU	utilization	percentage.

•	.MemUsage	returns	the	memory	utilization.

•	.NetIO	returns	the	network	I/O	utilization.

•	.BlockIO	returns	the	block	I/O	utilization.

•	.MemPerc	returns	the	memory	utilization	percentage.

•	.PIDs	returns	the	number	of	PIDs.

As	you	can	see	in	Figure	10.4,	this	provides	a	great	way	to	see	the	performance
data	by	host.

Figure	10.4	Using	the	--format	option	to	see	performance	data	by	host

APIs
The	docker	stats	command	is	a	great	way	to	pull	a	live	stream	of	data.	The
good	 news	 is	 that	REST	APIs	 are	 available	 that	 you	 can	 utilize	 to	 build	 your
own	 performance	 dashboards	 across	 clusters.	 These	 APIs	 provide	 similar	 live
stream	data	but	are	more	detailed	than	docker	stats.

GET	/containers/(ID/Name)/stats

The	API	end	point	to	pull	statistics	about	a	running	container	is
Click	here	to	view	code	image

curl	--unix-socket	/var/run/docker.sock	-X	GET
'http:/v1.24/containers/<container	ID>/stats'

Just	as	the	docker	stats	command	does,	the	API	starts	streaming	the	data
every	 second.	 It	 is	 up	 to	 you	 to	 program	 it	 in	 a	 way	 that	 does	 not	 disrupt
performance.	 For	 e.g.	 you	 may	 want	 a	 snapshot	 at	 some	 defined	 frequency.
Hopefully,	this	limitation	will	be	fixed	soon	by	including	some	kind	of	streaming
flag	in	the	API.
As	 we	 learned	 in	 previous	 chapters,	 one	 of	 the	 best	 practices	 to	 effectively

monitor	containers	is	to	tag	the	containers	in	a	meaningful	way.	You	can	define
the	tags	when	you	build	the	images.	This	way,	rather	than	working	at	a	particular
host	or	container	level,	you	can	work	with	tag	names.
For	more	information	on	REST	APIs,	refer	to	docker.com.

cAdvisor
cAdvisor,	also	known	as	Container	Advisor,	is	a	monitoring	solution	developed
by	Google.	 It	 provides	 detailed	 data	 on	 the	 usage	 and	 performance	metrics	 of
containers	through	a	graphical	user	 interface.	It	comes	as	a	container	 itself	 that
you	can	deploy	on	your	host	machines.	cAdvisor	collects	 the	data	 from	all	 the

http://docker.com

containers	running	on	the	host,	then	aggregates	and	processes	these	data	for	your
consumption.	It	also	exposes	this	data	through	APIs	that	you	can	take	advantage
of.
So	that	you	can	quickly	try	out	cAdvisor	on	your	machine	with	Docker,	there

is	 a	Docker	 image	 that	 includes	 everything	 you	 need	 to	 get	 started	 (for	more
information,	 see	 https://github.com/google/cadvisor).	 You	 can	 run	 a	 single
cAdvisor	to	monitor	the	whole	machine.	Simply	run	the	following	code:
Click	here	to	view	code	image

sudo	docker	run	\
	--volume=/:/rootfs:ro	\
	--volume=/var/run:/var/run:rw	\
	--volume=/sys:/sys:ro	\
	--volume=/var/lib/docker/:/var/lib/docker:ro	\
	--publish=8080:8080	\
	--detach=true	\
	--name=cadvisor	\
	google/cadvisor:latest

cAdvisor	 runs	 in	 the	 background.	 You	 can	 see	 the	 GUI	 by	 going	 to
http://localhost:8080,	which	brings	up	the	built-in	web	UI.
The	last	two	ways	of	collecting	metrices	we	discussed	are	good	solutions	but

very	 host-centric.	 They	 do	 provide	 APIs	 that	 you	 can	 use	 to	 centralize	 your
monitoring	system,	but	many	off-the-shelf	systems	provide	cluster-wide	metrics
and	 monitoring.	 We	 discuss	 a	 couple	 of	 systems	 next.	 This	 is	 a	 very	 fast-
changing	 area,	 so	 the	 idea	 here	 is	 to	 provide	 the	 key	 concepts.	 You	 should
continue	to	search	online	for	 the	respective	project	pages	for	 these	solutions	 to
get	the	latest	information.

Cluster-wide	Monitoring	Tools
Let’s	look	into	some	of	the	open	source	cluster-wide	monitoring	tools	available.

Heapster
Heapster	 is	 another	 solution	 developed	 by	 Google	 to	 solve	 cluster-wide
monitoring.	It	uses	cAdvisor	heavily	to	achieve	its	goals	and	is	a	good	fit	if	you
are	 using	 Kubernetes	 as	 your	 orchestration	 engine.	 However,	 at	 this	 book’s
publication,	Heapster	supports	only	Kubernetes	and	CoreOS.
In	Kubernetes,	cAdvisor	is	integrated	into	the	Kubelet	binary.	As	we	discussed,

cAdvisor	 auto-discovers	 all	 containers	 within	 the	 host	 and	 collects	 the	 usage,

https://github.com/google/cadvisor
http://localhost:8080

performance,	and	network	usage	statistics.	Kubelet	takes	all	these	statistics	from
cAdvisor	 and	 exposes	 the	 aggregated	 resource	 usage	 statistics	 to	 Heapster
through	a	REST	API.	Heapster	processes	and	groups	this	data	and	pushes	to	the
configured	 back	 end	 for	 visualization.	 Currently	 supported	 back	 ends	 include
InfluxDB	and	Grafana	for	visualization.
Refer	 to	 https://kubernetes.io/	 and	 https://github.com/kubernetes/heapster	 for

more	details.

Prometheus
Prometheus	 is	 an	 open	 source	 cluster	monitoring	 and	 alerting	 solution.	 It	 is	 a
little	different	 from	other	 solutions	 in	 that	 it	 is	built	on	a	pull-based	model.	 In
this	model,	 the	monitoring	 agent	 pulls	 its	 targets	 on	 a	predefined	 frequency	 to
collect,	 store,	and	alert	on	data.	The	applications	must	expose	 their	data	 rather
than	send	it	out.	It	also	offers	a	flexible	query	language	called	PromQL.	Before
we	 look	 into	 how	 Prometheus	 works	 with	 Docker,	 let’s	 look	 at	 its	 main
components:

•	Prometheus	server.	 This	 component	 pulls/scrapes	 and	 stores	 the	 collected
data	 and	 run	 rules	 to	 record	 new	 time	 series.	 It	 also	 can	 be	 configured	 to
generate	diagnostic	alerts	that	can	be	picked	up	by	Alertmanager.

•	Web	UI.	 Prometheus	 uses	 Grafana	 as	 the	 graphical	 front-end	 interface	 to
build	highly	visual	and	interactive	dashboards.

•	Push	 gateway.	 This	 intermediate	 service	 enables	 you	 to	 push	 the	metrics
from	 short-lived	 services	 for	 which	 the	 data	 pull	 is	 not	 possible.	 The
Prometheus	server	can	 then	pull	 those	metrics.	Be	careful	when	using	push
gateways,	 as	 they	 can	 become	 single	 points	 of	 failure	 for	 that	 particular
source.

•	Exporters.	 These	 are	 special-purpose	 plugins	 or	 libraries	 used	 to	 export
metrics	 from	certain	 systems	 in	which	 it	 is	 not	 feasible	 to	 instrument	 them
with	Prometheus	metrics.	Following	are	some	examples:

•	HAProxy	 is	a	simple	server	 that	scrapes	HAProxy	stats	and	exports	 them,
via	HTTP/JSON	for	Prometheus	consumption	at	regular	intervals.
•	 Memcached	 exporter	 exports	 metrics	 from	 a	 mem-cached	 server	 for
Prometheus	consumption.	You	can	create	custom	exporters	 for	your	 third-
party	applications.	There	are	many	available.	For	the	latest	list	of	available
exporters,	 refer	 to

https://kubernetes.io/
https://github.com/kubernetes/heapster

https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exporters.md
•	Alertmanager.	Alerts	sent	by	the	Prometheus	server	and	other	applications
are	 processed	 by	 Alertmanager	 as	 configured.	 The	 processing	 includes
deduplication,	grouping,	and	routing	 to	 the	configured	medium	(e.g.,	email,
pager).

Given	all	 these	components	and	 their	 functions,	 it	 is	easy	 to	understand	how
Prometheus	can	be	used	to	monitor	Docker	containers	with	an	example.	In	this
example,	we	set	up	the	following:

•	Run	Prometheus	and	the	components	mentioned	previously.

•	 Add	 a	 node	 exporter	 container	 that	 can	 be	 used	 to	 export	 metrics	 from
containers	and	a	cAdvisor	container.

•	Set	the	node	exporter,	cAdvisor,	and	Prometheus	containers	as	our	targets	to
be	monitored	by	Prometheus	(in	this	case,	Prometheus	will	monitor	itself).

•	Set	up	and	configure	Grafana.

•	View	the	stats.

•	Integrate	with	Alertmanager	to	configure	alerts.

Step	1:	Running	Prometheus
The	first	step	is	 to	bring	up	Prometheus	server.	We	run	this	server	as	a	Docker
container.	In	order	to	collect	Docker	metrics,	we	configure	this	container	as	the
Prometheus	target	so	that	it	monitors	itself	too.
Let’s	 begin	 with	 a	 Docker	 compose	 file,	 docker-compose.yml,	 that	 runs

Prometheus	as	a	container:
Click	here	to	view	code	image

version:	'2'

networks:
-	pk_network:
	driver:bridge

volumes:
prometheus_data:	{}

services:

https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exporters.md

prometheus:
image:	prom/prometheus
container_name:	pk_prometheus
volumes:
-	./prometheus/:/etc/prometheus/
-	prometheus_data:/prometheus
command:
-	'-config.file=/etc/prometheus/prometheus.yml'
-	'-storage.local.path=/prometheus'
-	'-storage.local.memory-chunks=100000'
restart:	unless-stopped
expose:
-	9090
ports:
-	9090:9090
networks:
-	pk_network
labels:
	org.label-schema.group:	"monitoring	for	PK	containers"

As	you	notice,	we	pulled	the	Prometheus	image	and	ran	it	as	pk_prometheus.
We	also	 created	 a	 bridge-based	 network,	 pk_network,	 to	which	 containers	 are
added.	Next,	we	mapped	the	configuration	file,	prometheus.yml,	that	defines	the
scrape	information,	and	we	mapped	and	exposed	the	port.
Here	is	what	prometheus.yml	looks	like:

Click	here	to	view	code	image

global:
scrape_interval:	20s
evaluation_interval:	20s

#Attach	the	below	label	for	graph	view
external_labels:	monitor:	'Docker-pk-monitor'

#	End	points	for	scrape
-	job_name:	'pk_prometheus'
scrape_interval:	25s
static_configs:
-	targets:	['localhost:9090']

It	 is	quite	self-explanatory.	We	set	 the	scraping	and	evaluation	 intervals.	The
scraping	 interval	 defines	 how	 frequently	 to	 scrape	 the	 target,	 whereas	 the

evaluation	 interval	 defines	 rules	 evaluation	 frequency.	 Notice	 we	 added	 the
Prometheus	container	that	we	are	about	to	bring	up	as	its	target	so	it	will	monitor
itself.
Now,	let’s	bring	Prometheus	up	by	running	docker-compose,	as	shown	in

Figure	10.5:

docker-compose	up	–d

Figure	10.5	Creating	Prometheus	container

To	 confirm	 that	 Prometheus	 is	 up	 and	 running,	 let’s	 run	 docker	 ps,	 as
shown	in	Figure	10.6.

Figure	10.6	Prometheus	up	and	running

Everything	 looks	 good	 so	 far.	 To	 get	 to	 the	 Prometheus	 UI,	 go	 to
http://localhost:9090/.	Figure	10.7	shows	what	you	should	see.

Figure	10.7	Prometheus	user	interface

Step	2:	Adding	Node	Exporter	and	cAdvisor
Let’s	start	adding	other	components	in	the	same	compose	file	and	add	targets.	To
start,	we	 add	 the	 node	 exporter	 and	 cAdvisor	 to	 our	 existing	Docker	 compose
file	 so	 that	 they	 will	 also	 run	 as	 containers.	 Notice	 we	 are	 creating	 these	 as
example	placeholders	to	collect	metrics	from	application	containers.	We	will	use
these	containers	as	targets	for	our	Prometheus	server	in	the	next	step.
Click	here	to	view	code	image

nodeexporter:
image:	prom/node-exporter
container_name:	pk_nodeexporter
restart:	unless-stopped
expose:
-	9100
networks:
-	pk_network
labels:
	org.label-schema.group:	"monitoring	for	PK	containers"

cadvisor:

http://localhost:9090/

image:	google/cadvisor:v0.26.1
container_name:	pk_cadvisor
volumes:
-	/:/rootfs:ro
-	/var/run:/var/run:rw
-	/sys:/sys:ro
-	/var/lib/docker/:/var/lib/docker:ro
restart:	unless-stopped
expose:
-	8080
networks:
-	pk_network
labels:
	org.label-schema.group:	"monitoring	for	PK	containers"

What	we	did	here	is	very	straightforward.	We	spun	up	the	node	exporter	and
cAdvisor	containers,	and	we	exposed	the	ports	on	the	same	network.

Step	3:	Adding	Targets
The	 next	 step	 is	 to	 add	 the	 node	 exporter	 and	 cAdvisor	 as	 our	 Prometheus
targets.	Let’s	add	them	to	our	existing	Prometheus.yml	file:
Click	here	to	view	code	image

scrape_configs:
-	job_name:	'pk_nodeexporter'
scrape_interval:	15s
static_configs:
-	targets:	['nodeexporter:9100']

-	job_name:	'pk_cadvisor'
scrape_interval:	20s
static_configs:
-	targets:	['cadvisor:8080']

Let’s	run	the	compose	file	again	and	make	sure	our	new	containers	are	up:

docker-compose	up	-d

As	you	can	see	in	Figure	10.8,	all	is	well	so	far.

Figure	10.8	Running	docker	compose

Step	4:	Bringing	Up	the	User	Interface:	Grafana
To	stand	up	Grafana	to	view	the	metrics,	we	go	back	to	our	Docker	compose	file
and	update	it	to	include	Grafana:
Click	here	to	view	code	image

...
volumes:
prometheus_data:	{}
grafana_data:	{}

...
grafana:
image:	grafana/grafana
container_name:	grafana
volumes:
-	grafana_data:/var/lib/grafana
env_file:
-	user.config
restart:	unless-stopped
expose:
-	3000
ports:
-	3000:3000
networks:
-	pk_network
labels:
	org.label-schema.group:	"monitoring	for	PK	containers"

Next,	let’s	add	a	user	configuration	file	to	create	an	admin	user	for	Grafana	at
the	 same	 location	 where	 our	 Docker	 compose	 file	 resides.	 Call	 this	 file
user.config,	as	specified	previously	in	env_file:
Click	here	to	view	code	image

GF_	SECURITY_ADMIN_USER=admin

GF_	SECURITY_ADMIN_PASSWORD=admin

GF_	USERS_ALLOW_SIGN_UP=false

Now	let’s	run	bring	up	our	Grafana	and	test	it:

docker-compose	up	–d

As	you	can	see	in	Figure	10.9,	all	our	containers	are	up.

Figure	10.9	Containers	are	up

To	check	the	status	of	Docker	containers,	use	the	docker	ps	command,	as
shown	in	Figure	10.10.

Figure	10.10	Using	the	Docker	ps	command	to	check	the	status

Let’s	 check	 out	 our	 apps.	Go	 to	 http://localhost:9090/	 to	 see	 Prometheus,	 as
shown	in	Figure	10.11.	Go	to	http://localhost:3000/	to	see	Grafana,	as	shown	in
Figure	10.12.

http://localhost:9090/
http://localhost:3000/

Figure	10.11	Checking	out	Prometheus

Figure	10.12	Checking	out	Grafana

As	we	can	see,	our	applications	are	up	and	running.

Configuring	Grafana
We	 need	 to	 configure	 Grafana	 to	 visualize	 the	 data.	 First,	 log	 in	 with	 the
username	and	password	from	the	Grafana	configuration	file,	which	we	specified
as	admin/admin.
Now	add	the	data	sources	for	Grafana,	as	shown	in	Figure	10.13.

Figure	10.13	Adding	the	data	sources	for	Grafana

Let’s	 fill	 in	 the	 detailed	 source	 information	 such	 as	 type	 of	 source	 and
credentials,	as	shown	in	Figure	10.14:

•	Name:	Prometheus

•	Type:	Prometheus

•	URL:	http://prometheus:9090

•	Access:	proxy

http://prometheus:9090

Figure	10.14	Setting	the	data	sources

Click	 Save	 &	 Test,	 and	 you	 should	 see	 a	 success	 message.	 Grafana	 and
Prometheus	are	now	connected.

Step	5:	Viewing	the	Stats
We	are	all	done	with	the	setup.	Now	we’re	ready	to	see	the	stats	that	Prometheus
has	collected	from	three	targets:	cAdvisor,	node	exporter,	and	Prometheus	itself.
Bring	 up	 the	 Prometheus	 UI	 by	 going	 to	 http://localhost:9090.	 Click	 the

dropdown	menu	next	 to	 the	Execute	button,	and	select	 the	queries	 to	view	 the
collection	stats;	click	Execute,	as	shown	in	Figure	10.15.

http://localhost:9090

Figure	10.15	How	to	view	the	collection	stats

In	 the	 example	 shown	 in	 Figure	 10.16,	 we’ve	 selected
container_cpu_system_seconds_total.	 The	 results	 show	 all	 the	 containers	 and
total	system	CPU	time	consumed	in	seconds.

Figure	10.16	Container	results:	total	system	CPU	time	consumed,	in	seconds

Great	stats,	but	the	display	doesn’t	look	that	great.	Let’s	improve	the	aesthetics
by	importing	Prometheus	stats	to	Grafana.	Bring	up	the	Grafana	UI	by	going	to
http://localhost:3000.	Log	in	with	your	username	and	password,	which	is	set	to
admin/admin	 in	 our	 case.	 Click	 the	 dropdown	 at	 the	 top	 and	 select	 Data
Sources.	Click	on	the	Dashboards	tab,	as	shown	in	Figure	10.17.

Figure	10.17	Editing	the	data	source

You	 will	 already	 see	 a	 Prometheus	 Stats	 entry:	 remember,	 we	 did	 the	 data
source	configuration	earlier	(see	Figure	10.14).	Click	the	Import	button	toward
the	right	end	of	the	Prometheus	entry.	It	will	import	all	the	stats	and	events	from
the	 Prometheus	 database.	 This	 step	 needs	 to	 be	 done	 only	 once;	 the	 new	data
will	now	automatically	be	pulled	with	each	refresh	by	Grafana.
To	 review	 the	 sample	 stats	 from	what	 you	 just	 imported,	 click	Prometheus

Stats.	You	should	see	 the	new,	more	attractive	dashboards,	as	shown	in	Figure
10.18.

http://localhost:3000

Figure	10.18	Some	good-looking	dashboards!

Looks	good,	all	thanks	to	the	power	of	Grafana!
Let’s	 move	 another	 step	 forward	 and	 create	 a	 simple	 custom	 dashboard	 to

show	the	cumulative	CPU	load	of	containers	on	the	host.	Bring	up	the	Grafana
UI,	click	on	the	top	left	menu,	select	Dashboards,	and	then	click	New,	as	shown
in	Figure	10.19.

Figure	10.19	Creating	a	simple	custom	dashboard	to	show	the	cumulative	CPU
load	of	containers	on	the	host

Click	on	Single	Stat.	Go	ahead	and	configure	it	as	follows:
Click	here	to	view	code	image

sum(rate(container_cpu_user_seconds_total{image!=""}[1m]))	/
count(node_cpu{mode="system"})	*	100

The	query	pulls	the	CPU	resource	utilization	at	a	given	point	in	time,	as	shown
in	Figure	10.20.	This	will	be	in	real	time.

Figure	10.20	Pulling	the	CPU	resource	utilization

Other	 such	 examples	 that	 can	 be	 built	 in	 the	 same	 way	 include	 memory
utilization	and	system	load	graphs,	as	shown	in	Figures	10.21	and	10.22.

Figure	10.21	Pulling	the	memory	load

Figure	10.22	Pulling	the	system	load

Step	6:	Integrating	the	Alertmanager
To	finish,	let’s	now	integrate	the	Alertmanager	as	part	of	this	configuration.	You
can	configure	the	alerts	in	the	Alertmanager	based	on	the	data	collection	within
Prometheus.
Let’s	do	the	following	setup:

1.	Open	the	Docker	compose	file	and	add	the	following:
Click	here	to	view	code	image

alertmanager:
	image:	prom/alertmanager
	container_name:	alertmanager_pk
	volumes:
	-	./alertmanager/:/etc/alertmanager/
	command:
	-	'-config.file=/etc/alertmanager/config.yml'
	-	'-storage.path=/alertmanager'
	restart:	unless-stopped
	expose:
	-	9093
	ports:
	-	9093:9093
	networks:
	-	pk_network
	labels:
		org.label-schema.group:	"monitoring	for	PK	containers"

2.	 Add	 the	 Alertmanager	 in	 the	 Prometheus	 container	 service	 within	 the
Docker	compose	file:
Click	here	to	view	code	image

prometheus:
	image:	prom/prometheus
	container_name:	Prometheus_pk
	volumes:
	-	./prometheus/:/etc/prometheus/
	-	prometheus_data:/prometheus
	command:
	-	'-config.file=/etc/prometheus/prometheus.yml'
	-	'-storage.local.path=/prometheus'
	-	'-alertmanager.url=http://alertmanager:9093'
	-	'-storage.local.memory-chunks=100000'

http://alertmanager:9093

	restart:	unless-stopped
	expose:
	-	9090
	ports:
	-	9090:9090
	networks:
	-	pk_network
	labels:
		org.label-schema.group:	"monitoring	for	PK	containers"

3.	Create	a	rules	file	to	configure	alerting	rules;	name	this	file	container.rules:
Click	here	to	view	code	image

ALERT	tomcat_down
	IF	absent(container_memory_usage_bytes{name="tomcat"})
	FOR	10s
	LABELS	{	severity	=	"critical"	}
	ANNOTATIONS	{
	summary=	"tomcat	down",
	description=	"tomcat	container	is	down	for	more	than		10	seconds."
	}

This	 rule	 checks	 for	 the	 Tomcat	 status.	 It	 generates	 alerts	 if	 Tomcat	 goes
down.	It	does	this	by	checking	the	memory	used	by	Tomcat;	if	the	stats	are
absent,	it	sends	out	an	alert.

4.	Add	this	rule	to	the	Prometheus.yml	file:
Click	here	to	view	code	image

#	Load	and	evaluate	rules	in	this	file	every
		'evaluation_interval'	seconds.
rule_files:
	-	"containers.rules"

5.	Run	the	Docker	compose	file	again:
docker-compose	up	–d

Bring	up	Prometheus	by	going	to	http://localhost:9090.	Click	the	Alerts	menu
at	the	top.	You	can	see	the	active	alerts,	as	shown	in	Figure	10.23.

http://localhost:9090

Figure	10.23	Showing	active	alerts

You	 can	 further	 improve	 this	 by	 configuring	 the	 tools	 of	 your	 choice	 for
notification.	 For	 more	 information,	 check	 out	 the	 Prometheus	 site:
https://prometheus.io/.
As	 discussed	 earlier,	 monitoring	 is	 a	 very	 important	 task	 and	 should	 be	 a

primary	concern,	not	an	afterthought,	when	transitioning	to	containers.	This	is	a
new	 field,	 and	 a	 bit	 problematic	 thanks	 to	 the	 challenges	 highlighted	 in	 this
chapter,	 but	 new	 solutions	 are	 hitting	 the	 market.	 Keep	 an	 eye	 out	 and	 keep
learning!

https://prometheus.io/

PART	III

Hands-On	Project—Putting	Learning
into	Practice

Chapter	11

Case	 Study:	 Monolithic	 Helpdesk
Application

In	this	chapter,	we	build	a	traditional	web-based	helpdesk	application	following
industry	standard	practices.	However,	we	build	it	without	using	the	concepts	we
have	learned	so	far;	that	is,	we	build	a	monolithic	application.	The	idea	here	is	to
gain	real-world	experience.	We	build	this	application	and	then	look	at	some	real-
world	 complexities	 such	 as	 application	 deployment,	 managing	 updates,	 and
scalability.	 Once	 we	 understand	 the	 complexities	 of	 using	 monolithic
architecture,	 we	 will	 see	 how	 these	 challenges	 can	 be	 solved	 using	 a
combination	 of	microservices	 and	Dockers,	which	we	will	 do	 in	 the	 next	 two
chapters	when	we	 rebuild	 the	 application	 using	microservices	 architecture	 and
deploy	using	containers.

Helpdesk	Application	Overview
In	today’s	digital	world,	most	companies	are	transforming	the	customer	support
experience	by	providing	a	self-service	model	 through	mobile/web	applications.
Application	experience,	availability,	performance,	and	search	capabilities	are	all
keys	 to	 faster	 issue	 resolution	 and	 are	 critical	 characteristics	 of	 the	 system	 to
meet	the	aforementioned	objectives.
This	 application	 provides	 support	 capabilities	 to	 help	 and	 manage	 customer

concerns.	It	is	important	to	note	that	the	application	is	simplified	for	the	purpose
of	 explaining	 the	 concepts,	 architecture,	 and	 complexities	 of	 monolithic
applications.
Assume	that	in	the	real	world,	this	application	provides	customer	support	for	a

mobile	phone	vendor.	This	application	provides	the	following	capabilities:

•	Account	management.	Provides	the	user	account	management	functionality
(add/modify/delete).	 Authentication	 is	 managed	 through	 username	 and
password	on	local	database	to	keep	it	simple.

•	 Incident	 creation	 and	 management.	 Provides	 the	 ability	 to	 submit	 new

incidents	along	with	viewing	and	updating	existing	ones.

•	 Product	 catalog	 management	 (admin	 only).	 Stores	 and	 manages	 the
product	catalog	based	on	the	product	sold	and	inventory.

•	Appointment	setup.	Provides	ability	to	set	up	an	appointment	with	support
professional.

•	Search.	Provides	capability	 to	 search	 for	existing	 issues	and	 resolutions	as
well	as	to	search	the	product	catalog.

•	Message	boards.	Customer	 community	board	 for	 customers	 to	 collaborate
and	help	each	other.

The	following	technologies	will	be	used	to	build	this	application:

•	User	interface:	HTML,	JavaScript,	and	JQuery

•	Middle	layer:	Java	7,	Spring	3.x,	Jersey	1.8,	and	Hibernate

•	Database:	MySQL	5.x

Refer	to	Appendix	A	to	better	understand	the	application	workflows	and	step-
by-step	process.	All	 the	code	and	assets	are	available	on	the	GitHub	repository
located	at	https://github.com/kocherMSD/Helpdesk_Monolithic.git.
You	 can	 clone	 the	 code	 to	 your	 local	 machine	 using	 the	 git	 clone

command.	We	will	use	this	code	during	our	set	up	process.

Application	Architecture
Now	that	we	understand	how	this	application	is	used,	let’s	dive	into	the	technical
details	of	the	application.	Figure	11.1	shows	the	component-based	architecture	of
the	application.

https://github.com/kocherMSD/Helpdesk_Monolithic.git

Figure	11.1	Our	helpdesk	app’s	components	and	basic	architecture

As	you	see,	 it	 is	a	 three-tier	architecture	application	composed	of	a	database,
business	logic/services,	and	a	user	interface.	Now	let’s	take	a	high-level	look	at
the	 list	of	 services	 that	 are	 part	 of	 the	 application.	For	 implementation	details,
you	can	refer	to	code	posted	at	GitHub.

Authentication,	Interceptor,	and	Authorization
As	 the	name	 indicates,	 this	module	provides	 services	 to	authenticate	users	and
authorize	what	 level	 of	 information	 users	 are	 entitled	 to	 access	 based	 on	 their
role.	To	make	 it	 simple,	we	have	 implemented	 simple	authentication	 (database
username/password)	and	role	(database	username	and	role)–based	authorization.
We	 have	 implemented	 spring	 interceptor	 to	 make	 sure	 every	 request	 is
authenticated.	 The	 role	 and	 login	 are	 saved	 into	 session	 and	 are	 fetched	 from
session	as	required.
Following	is	the	pseudocode	for	authentication.

Authentication
This	service	 is	use	 to	authenticate	user	using	username	and	password	from	the
text	field	of	login	page.	The	username/password	pair	is	matched	with	the	entry	in
the	database.

•	Context:	authenticate

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	request

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	authentication	service:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/authenticate/")
public	AuthenticationResponse	authenticate(
							@Context	HttpHeaders	headers,
							AuthenticationRequest	request)
		//To-do	Implementation
}

Interceptor
The	 Interceptor	 intercepts	 all	 the	 incoming	 requests	 to	 the	 application	 server
using	 ./*	 pattern	 matching,	 which	 helps	 in	 executing	 the	 prehandle
function.	Following	is	the	spring	pseudocode	for	XML	and	Java:
Click	here	to	view	code	image

<interceptors>
		<interceptor>
				<mapping	path="/*"/>
				<beans:bean>
									class="org.spring.controller.AuthenticationInterceptor"
				<beans:bean/>
		</interceptor>
</interceptors>

@Override
public	boolean	preHandle(

							HttpServletRequest	request,
							HttpServletResponse	response,
							Object	handler)	throws	Exception	{
//To-do	Implementation
}

Authorization
Our	application	has	multiple	roles,	and	when	users	log	in,	their	roles	are	saved	in
the	HTTP	session	as	part	of	the	interceptor	logic.	The	following	code	snippet	is
used	in	the	authorization	controller	to	fetch	the	HTTP	session.
Click	here	to	view	code	image

LoginForm	userData	=	(LoginForm)
context.getSession().getAttribute("LOGGEDIN_USER");

The	following	code	snippet	is	for	the	authorization	frontend	JavaServer	Pages
(JSP):
Click	here	to	view	code	image

<%

LoginForm	loginform=(LoginForm)session.getAttribute	("LOGGEDIN_USER");
String	user=loginform.getUsername();
if(session.getAttribute("ACCESS_LEVEL").equals("4"))
%>

Account	Management
This	component	provides	services	related	to	managing	user	accounts,	associated
contract	or	entitlement	details,	details	of	purchases	such	as	product	information,
serial	number,	and	so	on.	For	example,	a	customer	may	have	bought	one	or	more
mobile	 phones	 with	 warranty	 and	 professional	 support	 services.	 These	 details
will	 be	 made	 available	 through	 APIs	 for	 entitlement	 check	 and	 support.	 The
following	services	are	provided:

•	getAccount:	Gets	details	of	an	onboarded	user.

•	addAccount:	Onboards	a	new	user.

•	updateAccount:	Updates	an	existing	onboarded	user.

•	deleteAccount:	Removes	existing	user	from	the	system.

Following	is	the	signature	for	the	service	class:
Click	here	to	view	code	image

@Component
@Path("/AccountService")
public	class	AccountServiceImpl	implements	AccountService	{

getAccount
This	service	pulls	the	account	information	for	the	registered	user	if	available	in
the	 system.	 Account	 information	 is	 fetched	 from	 a	 backend	 database	 and
returned	in	JSON	format.

•	Context:	AccountService/getAccount/{customerId}

•	Method:	GET

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	customerId

•	Output:	JSON	of	user,	account	information,	device,	and	services	information

Following	is	the	pseudocode	for	getAccount:
Click	here	to	view	code	image

@Override
@GET
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/getAccount/{customerId}")
public	AccountViewResponse	getAccount(
							@Context	HttpHeaders	headers,
							@PathParam("customerId")String	customerId)
							throws	ServiceInvocationException					{
			//To	do	the	task	and	implementation	of	DAO
}

addAccount
This	 service	 adds	 the	 given	 account	 for	 the	 customer.	 It	 adds	 account
information	in	the	backend	database.	The	input	is	constructed	in	JSON	from	text

fields	and	persisted	in	respective	database	tables.

•	Context:	AccountService/addAccount

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	 Input:	 HttpHeaders,	 JSON	 of	 user,	 account	 information,	 device,	 and
services	information

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	addAccount:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/addAccount/")
public	AccountResponse	addAccount(
							@Context	HttpHeaders	headers,
							AccountRequest	req)
							throws	ServiceInvocationException	{
//To	do	the	task	and	implementation	of	DAO
}

updateAccount
This	service	updates	the	account	information	of	the	given	user	in	the	system.	The
updated	information	is	persisted	in	the	backend	database.

•	Context:	AccountService/updateAccount

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	 Input:	 HttpHeaders,	 JSON	 of	 user,	 account	 information,	 device	 and
services	information

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	updateAccount:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/updateAccount/")
public	AccountResponse	updateAccount(
							@Context	HttpHeaders	headers,
							AccountRequest	req)
							throws	ServiceInvocationException	{
//To	do	the	task	and	implementation	of	DAO
}

deleteAccount
This	service	is	used	to	delete	an	account	of	the	given	user	from	the	application.
If	 an	 account’s	 information	 is	 available,	 then	 that	 account’s	 information	 is
removed	from	the	database.

•	Context:	AccountService/deleteAccount

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	 Input:	 HttpHeaders,	 JSON	 of	 user,	 account	 information,	 device	 and
services	information

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	deleteAccount:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/deleteAccount/")

public	AccountResponse	deleteAccount(
							HttpHeaders	headers,
							AccountRequest	req)
							throws	ServiceInvocationException	{
//To	do	the	task	and	implementation	of	DAO
}

Ticketing
This	 set	 of	 services	 is	 used	 by	 a	 registered	 user	 to	 open	 and	 review	 support
tickets	on	the	products	purchased.	The	following	services	are	provided:

•	createTicket:	Creates	a	ticket.

•	viewTicket:	Opens	a	ticket	to	be	viewed.

•	viewAllTicket:	Opens	all	tickets	to	be	viewed.

Following	is	the	service	class	definition:
Click	here	to	view	code	image

@Component
@Path("/TicketService")
public	class	HelpDeskTicketServiceImpl
							implements	HelpDeskTicketService,	ApplicationContextAware	{

createTicket
This	service	creates	a	ticket	for	the	user.	A	JSON	request	is	constructed	using	the
content	of	a	create	ticket	webpage.	This	JSON	request	is	transformed	as	a	data
model	and	persisted	in	the	database	using	hibernate	so	that	it	can	be	viewed	later
for	resolution.

•	Context:	TicketService/createTicket

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	 Input:	HttpHeaders,	 JSON	of	 ticket	 information	 (e.g.,	 contract	 number,
issue	information,	user	ID)

•	 Output:	 Ticket	 number	 generated,	 response	 status	 (i.e.,	 either	 success	 or

failure)

Following	is	the	pseudocode	for	createTicket:
Click	here	to	view	code	image

@Override
@POST
@Consumes({	MediaType.APPLICATION_JSON,	MediaType.APPLICATION_XML	})
@Produces({	MediaType.APPLICATION_JSON,		MediaType.APPLICATION_XML	})
@Path("/createTicket/")
public	TicketResponse	createHdTicket(
							@Context	HttpHeaders	headers,
							TicketRequest	ticketRequest)
							throws	ServiceInvocationException{
//To	do	the	task	and	implementation	of	DAO
}

viewTicket
This	service	returns	the	ticket	details	based	on	the	given	ticket	number	and	the
user	 role.	 It	pulls	 the	 ticket	 information	 from	the	database	 if	 the	 ticket	number
provided	for	the	customer	is	available.	A	data	model	is	fetched	using	hibernate
and	returned	as	JSON.

•	Context:	TicketServices/viewTicket/{userId}

•	Method:	GET

•	Consumes:	application/xml,	application/json

•	Produces:	application/xml,	application/json

•	Input:	HttpHeaders

•	 Output:	 JSON	 of	 tickets	 information	 (e.g.,	 contract	 number,	 issue
information,	user	ID)

Following	is	the	pseudocode	for	viewTicket:
Click	here	to	view	code	image

@Override
				@GET
				@Consumes({"application/xml",	"application/json"})
				@Produces({"application/json"})

				@Path("/viewTicket/{userId}/{ticketId}")
public	ViewTicketResponse	viewTicket(
							@Context	HttpHeaders	headers,
							@PathParam("userId")String	userId,
							@PathParam("ticketId")String	ticketId)
							throws	ServiceInvocationException	{
}

viewAllTicket
This	service	returns	all	the	tickets	available	in	the	system	that	were	created	by	a
logged-in	user.	A	data	model	is	fetched	using	hibernate	and	returned	as	JSON.

•	Context:	TicketServices/viewAllTicket

•	Method:	GET

•	Consumes:	application/xml,	application/json

•	Produces:	application/xml,	application/json

•	Input:	HttpHeaders

•	 Output:	 JSON	 of	 tickets	 information	 (e.g.,	 contract	 number,	 issue
information,	user	ID)

Following	is	the	pseudocode	for	viewAllTicket:
Click	here	to	view	code	image

@Override
@GET
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/viewAllTicket/")
public	ViewAllTicketResponse	viewAllTicket(
							@Context	HttpHeaders	headers)
							throws	ServiceInvocationException	{
//To	do	the	task	and	implementation	of	DAO
}

Following	are	the	options	that	are	available	to	the	users	based	on	the	role:

•	My	Tickets.	Provides	a	list	of	tickets	assigned	to	support	engineers	or	a	list
of	tickets	opened	by	users	based	on	user	roles.

•	Global	Ticket	View.	Enables	viewing	of	all	tickets	for	executive	or	support
manager	view.

Product	Catalog
The	product	catalog	service	enables	an	administrator	to	manage	a	list	of	products
offered	 by	 a	 company.	 It	 also	 enables	 users	 to	 view	 a	 list	 of	 products	 they
purchased	and	on	which	they	can	open	a	support	ticket.	Following	is	the	list	of
available	services:

•	getCatalog:	Returns	the	product	catalog.

•	addCatalog:	Creates	a	new	entry	in	product	catalog.

•	updateCatalog:	Updates	the	specified	entry	in	the	product	catalog.

•	deleteCatalog:	Deletes	an	existing	product	catalog	entry.

The	service	class	definition	is	as	follows:
Click	here	to	view	code	image

@Path("/CatalogService")
public	class	CatalogServiceImpl	implements	CatalogService	{

getCatalog
This	service	 returns	a	 list	of	products	available	 in	 the	system.	A	data	model	 is
fetched	using	hibernate	and	returned	as	JSON.

•	Context:	CatalogService/getCatalog/{customerId}

•	Method:	GET

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	 Input:	HttpHeaders,	customerId	 (all	occurrences	of	header	 should
be	replaced	with	HttpHeaders)

•	Output:	JSON	of	product	information	customer	has	under	his	or	her	account

Following	is	the	pseudocode	for	getCatalog:
Click	here	to	view	code	image

@Override
@GET
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/getCatalog/{customerId}")
public	ProductDetailsResponse	getCatalog(
							@Context	HttpHeaders	headers,
							@PathParam("customerId")	String	customerId)
							throws	ServiceInvocationException	{
//To	do	the	task	and	implementation	of	DAO
}

addCatalog
This	service	adds	a	new	product	to	the	Catalog.	A	JSON	request	is	created	using
the	input	page	and	then	transformed	into	a	data	model	and	saved	in	a	database
using	hibernate.

•	Context:	CatalogService/addCatalog

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	JSON	of	product	information	customer	has	under	his
or	her	account

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	addCatalog:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/addCatalog/")
public	CatalogResponse	addCatalog(
							@Context	HttpHeaders	headers,
							CatalogRequest	req)
							throws	ServiceInvocationException	{
//To	do	the	task	and	implementation	of	DAO

}

updateCatalog
This	service	updates	an	existing	product	catalog	entry	if	the	specified	product	is
available	in	the	system.	JSON	is	changed	in	the	data	model,	and	it	updates	the
database.

•	Context:	CatalogService/updateCatalog

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	JSON	of	product	information	customer	has	under	his
or	her	account

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	updateCatalog:
Click	here	to	view	code	image

@Override
				@POST
				@Consumes({"application/xml",	"application/json"})
				@Produces({"application/json"})
				@Path("/updateCatalog/")
				public	CatalogResponse	updateCatalog(
											HttpHeaders	headers,
											CatalogRequest	req)
											throws	ServiceInvocationException	{
//To	do	the	task	and	implementation	of	DAO
}

deleteCatalog
This	service	is	used	to	delete	a	product	catalog	entry	from	the	catalog.	The	entry
from	the	database	is	deleted	using	hibernate.

•	Context:	CatalogService/deleteCatalog

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	JSON	of	product	information	customer	has	under	his
or	her	account

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	deleteCatalog:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/deleteCatalog/")
public	CatalogResponse	deleteCatalog(
							HttpHeaders	headers,
							CatalogRequest	req)
							throws	ServiceInvocationException	{
//To	do	the	task	and	implementation	of	DAO
}

Appointments
The	 appointments	 service	works	 similarly	 to	 the	Apple	Genius	Bar.	Users	 can
reserve	an	appointment	with	 support	 engineers	 to	 schedule	 a	 time	at	 the	 store.
The	following	services	are	available	in	appointments:

•	 getAvailableTimeSlots:	 Gets	 all	 available	 times	 slots	 for	 an
appointment	for	a	given	date.

•	getAvailableDates:	 Returns	 the	 days	 for	 which	 at	 least	 one	 slot	 is
available.

•	saveAppointment:	Saves	an	appointment	to	the	schedule.

Following	is	the	service	class	definition:
Click	here	to	view	code	image

@Component
@Path("/AppointmentService")

public	class	AppointmentServiceImpl	{

getAvailableTimeSlots
This	 service	 retrieves	 all	 the	 available	 time	 slots	 for	 a	 given	 date	 in	 JSON
format.

•	Context:	AppointmentService/getAvailableTimeSlots

•	Method:	GET

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	TITLE

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	getAvailableTimeSlots:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/getAvailableTimeSlots/")
public
AppointmentAvailableTimeSlotResponse	getAvailableTimeSlots(
						@Context	HttpHeaders	headers,
						AppointmentAvailableTimeSlotRequest	Request)	{
//To	Do}

getAvailableDates
This	service	returns	all	the	available	dates	that	have	available	one	or	more	time
slots	for	the	appointment.

•	Context:	AppointmentService/getAvailableDates

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	TITLE

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	getAvailableDates:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/getAvailableDates/")
public
AppointmentAvailableDateResponse	getUnAvailableDates(
						@Context	HttpHeaders	headers,
						AppointmentAvailableDateRequest	request)	{
///to	do}

saveAppointment
This	 service	 sets	 and	 saves	 the	 appointment	 for	 a	 selected	 available	 time	 and
date.

•	Context:	AppointmentService/saveAppointment

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	TITLE,	request

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	saveAppointment:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/saveAppointment/")
//To	Do}

Message	Board
The	message	 board	 service	 enables	 collaboration	 between	 the	 user	 community
and	support	experts.	The	following	services	are	available	in	the	message	board:

•	getMessage:	Retrieves	a	message	available	in	the	system.

•	getAllMessage:	Gets	all	messages	based	on	a	given	time.

•	 createMessage:	 Saves	 a	 message,	 question,	 or	 answer	 provided	 by	 a
user.

Following	is	the	service	class	definition:
Click	here	to	view	code	image

@Component
@Path("/MessageService")
public	class	MessageServiceImpl	implements	MessageService	{

getMessage
This	 service	 pulls	 the	messages,	 questions,	 and	 answers	 available	 in	 a	 system,
based	on	the	question	asked	by	a	user.

•	Context:	MessageService/getMessage/{title}

•	Method:	GET

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	TITLE

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	getMessage:
Click	here	to	view	code	image

@Override
@GET
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/getMessage/{title}")

public	MessageViewResponse	getMessage(
						@Context	HttpHeaders	headers,
						@PathParam("title")String	title)
						throws	ServiceInvocationException	{
				//To	do	the	task	and	implementation	of	DAO
}

getAllMessage
This	service	returns	all	the	available	messages	or	questions	in	the	system	based
on	a	given	time	slot	provided	by	the	user	and	returns	them	in	JSON	format.

•	Context:	MessageService/getAllMessage

•	Method:	GET

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	getAllMessage:
Click	here	to	view	code	image

@Override
@GET
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/getAllMessage/")
public	MessageViewAllResponse	getAllMessage(
							@Context	HttpHeaders	headers)
							throws	ServiceInvocationException	{
//To	do	the	logic
}

createMessage
This	 service	 saves	 a	 message,	 question,	 or	 answer	 provided	 by	 a	 user	 on	 the
message	board.

•	Context:	MessageService/createMessage

•	Method:	POST

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	MessageRequest

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	createMessage:
Click	here	to	view	code	image

@Override
@POST
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/createMessage/")
public	RestResponse	createMessage(
							@Context	HttpHeaders	headers,
							MessageRequest	req)
							throws	ServiceInvocationException	{
//To	do	the	logic
}

Search
The	 search	 service	 allows	 users	 to	 perform	 text-based	 search	 across	 the
application.	 It	 looks	 for	 the	 text	 in	 all	 of	 the	 entities	 (database	 table);	 for
example,	 ticketing,	catalog,	and	message	data.	 It	matches	 the	 text	 if	 the	 text	 is
contained	in	the	data	available	for	the	application.	It	interacts	with	the	backend
database	 through	 DAO	 (data	 access	 object)	 layers	 and	 pulls	 all	 the	 related
information	from	database	tables	using	hibernate	mapping	with	the	text	provided
as	input	in	a	search	field.
Following	is	the	service	class	definition:

Click	here	to	view	code	image

@Component
@Path("/Search/Service")
public	class	SearchServiceImpl	implements	SearchService	{

•	Context:	SearchService/search

•	Method:	GET

•	Consumes:	application/xml,	application/json

•	Produces:	application/json

•	Input:	HttpHeaders,	search	text

•	Output:	Response	status	(i.e.,	either	success	or	failure)

Following	is	the	pseudocode	for	the	search	service:
Click	here	to	view	code	image

@Override
@GET
@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/search")
public	MessageViewResponse	search(
							@Context	HttpHeaders	headers,
							@PathParam("title")String	title)
							throws	ServiceInvocationException	{
				//To	do	the	task	and	implementation	of	DAO
}

Building	the	Application
Now	 that	 we	 have	 covered	 the	 architecture,	 web	 services,	 and	 various
dependencies	of	 the	application,	 let’s	download	 the	code,	build	 it,	and	see	 it	 in
action.

Setting	Up	Eclipse
We	have	used	Eclipse	IDE	for	development;	you	can	choose	whatever	IDE	you
are	 most	 comfortable	 with,	 but	 following	 are	 instructions	 for	 how	 to	 set	 up
Eclipse	on	Windows	(skip	this	step	if	you	already	have	Eclipse	installed):

1.	Download	Eclipse	from	https://eclipse.org/downloads/index-developer.php.
2.	Unzip	or	Unrar,	depending	on	your	system.	The	prerequisite	for	Eclipse	is
JRE	on	your	system	path.

3.	Double-click	eclipse.exe,	shown	in	Figure	11.2.

https://eclipse.org/downloads/index-developer.php

Figure	11.2	Unzipping	Eclipse

4.	Right-click	on	 the	package	 explorer	 and	 select	New	Java	Projects.	We’ll
name	 this	 project	 Helpdesk,	 as	 shown	 in	 Figure	 11.3,	 and	 leave	 default
values	in	the	other	fields.

5.	Uncheck	Use	 default	 location,	 browse	 to	 the	 directory	 where	 you	 have
cloned	 the	 code	 (as	 discussed	 in	 the	 beginning	 of	 this	 chapter),	 and	 click
Open.	Then,	click	Next.

Figure	11.3	Creating	a	new	Java	project	(named	Helpdesk)

6.	Click	Finish,	as	shown	in	Figure	11.4.

Figure	11.4	Completing	our	application	setup

This	completes	the	Eclipse	setup.	Figure	11.5	shows	all	the	application	files.

Figure	11.5	All	our	application	files

Building	the	Application
The	 following	 instructions	 show	 you	 how	 to	 run	 the	 build	 and	 produce	 the
deployable	WAR	file.	We	use	plain	old	Apache	Ant	build.

1.	We	need	to	configure	the	database	in	the	applicationContext.xml	file	of	code
base	 before	 building	 the	 WAR	 file.	 You	 can	 find	 it	 in	 Project
Location/src/main/webapp/WEB-INF/	 applicationContext.xml.	 Change	 the
url,	username,	and	password	properties	of	the	DataSource	bean	in
the	following	code	snippet.	Make	sure	you	use	these	same	credentials	when
you	install	and	configure	MySQL	database,	shown	in	later	steps.

Click	here	to	view	code	image

<bean	id="DataSource"	destroy-method="close"
class="org.apache.tomcat.jdbc.pool.DataSource">
		<property	name="driverClassName"
												value="com.mysql.jdbc.Driver"	/>
		<property	name="url"
												value="jdbc:mysql://<dbhost>:<dbport>/<dbname>"	/>
		<property	name="username"	value="<Username>"	/>
		<property	name="password"	value="<Password>"	/>
		<property	name="initialSize"	value="5"	/>
		<property	name="maxActive"	value="50"	/>
		<property	name="validationQuery"
												value="select	1	from	dual"	/>
		<property	name="testWhileIdle"	value="true"	/>
		<property	name="testOnBorrow"	value="true"	/>
		<property	name="minIdle"	value="020000"	/>
		<property	name="minEvictableIdleTimeMillis"
												value="30000000"	/>
		<property	name="timeBetweenEvictionRunsMillis"
												value="6000000"	/>
		<property	name="removeAbandoned"	value="true"/>
		<property	name="removeAbandonedTimeout"	value="30000"	/>
		<property	name="logAbandoned"	value="true"	/>
		<property	name="maxWait"	value="120000"	/>
</bean>

2.	Create	a	new	Build.xml	file	in	the	project	root	directory	with	the	following
targets:

Click	here	to	view	code	image

<project	name="projects"	default="jar"	basedir=".">

				<property	name="src"	location="src"/>
				<property	name="build"	location="build"/>
				<property	name="dist"	location="dist"/>
				<property	name="jar.location"	location="${dist}/lib"/>

		<dirname	property="projects.basedir"
											file="${ant.file.projects}"/>
		<echo>projects.basedir=${projects.basedir}</echo>

		<echo>Inside	smartview	project:
								smartview.basedir=${smartview.basedir}</echo>

								<path	id="project.classpath">
												<fileset	refid="sv.jars"/>
												<fileset	refid="common.dist"/>
								</path>

		<filelist	id="project.build.files"	dir="${projects.basedir}">
								<file	name="build.xml"	/>
		</filelist>

			<fileset	id="sv.jars"	dir="${projects.basedir}">
								<include	name="src/main/lib/*.jar"/>
				</fileset>

			<fileset	id="common.jars"	dir="${projects.basedir}">
				<include	name="src/main/lib/*.jar"/>
			</fileset>

			<fileset	id="common.dist"	dir="${projects.basedir}">
				<include	name="dist/lib/*.jar"/>
			</fileset>

3.	Compile	and	create	the	JAR	file	with	these	targets:
Click	here	to	view	code	image

<target	name="compile.individual"	depends="init">
				<javac	includeantruntime="false"
											debug="true"
											compiler="javac1.6"
											srcdir="${src}"	destdir="${build}">
								<classpath	refid="project.classpath"/>
				</javac>
				</target>

				<target	name="jar.individual"	depends="compile.individual">
				<mkdir	dir="${jar.location}"/>

				<mkdir	dir="${build}/META-INF"/>
		
				<copy	todir="${build}/META-INF">
								<fileset	dir="${src}/main/resource/META-INF"
																	includes="*.xml"/>
				</copy>

								<jar	jarfile=
													"${jar.location}/org-${ant.project.name}.jar"
													basedir="${build}"/>
				</target>
	
				<!--	Methods	only	used	by	the	top	level	of	JARing	or
									WARing	everything	up	-->
	
				<target	name="jar"	depends="init">
								<mkdir	dir="${dist}/lib"/>
								<subant	target="jar.individual">
												<filelist	refid="project.build.files"/>
								</subant>
				</target>

4.	Create	the	WAR	file	using	the	following	targets:
Click	here	to	view	code	image

<target	name="copy.files"	depends="jar">
	
								<copy	todir="${stage.war.lib}"	flatten="true">
												<fileset	dir="${projects.basedir}"
													includes="*/dist/lib/*.jar"
													excludes="*test*.jar"	/>
								</copy>

								<copy	todir="${stage.war.lib}"	flatten="true">
												<fileset	dir="${projects.basedir}"
													includes="common/configproperties/*.xml"	/>
								</copy>

								<copy	todir="${stage.war.lib}"	flatten="true">
												<fileset	refid="common.jars"/>
								</copy>
								<copy	todir="${stage.war.lib}"	flatten="true">
												<fileset	refid="sv.jars"/>

								</copy>
				</target>
	
				<target	name="war"	depends="init.war,copy.files">
								<war	destfile="dist/lib/helpdesk.war"
													webxml="src/main/webapp/WEB-INF/web.xml">
												<fileset	dir="src/main/webapp">
																<exclude	name="**/.svn"/>
												</fileset>
								<lib	dir="src/main/webapp/WEB-INF/lib"	/>
								<classes	dir="${build}/classes"	/>
								</war>
				</target>

5.	Right-click	the	Build.xml	file	and	click	Run	As	→	Ant	Build…,	as	shown
in	Figure	11.6.

Figure	11.6	Build.xml	run	options

6.	In	the	next	screen,	select	all	targets	from	the	window.

Our	 local	 environment	 is	 ready,	 and	we	 have	 generated	 the	WAR	 file	 under
<Project	Location>/helpdesk/dist/lib	named	helpdesk.war.

Deploying	and	Configuring
We	will	host	our	application	and	all	 related	services	on	Amazon	Web	Services
(AWS)	 and	 will	 use	 a	 single	 virtual	 machine	 for	 deployment.	 You	 are
encouraged	to	follow	the	instructions	in	this	section	to	get	hands-on	experience.
The	first	step	is	to	spin	up	an	EC2	instance	on	AWS.	For	our	purposes,	we’ll	use

a	medium-flavor	virtual	machine	running	an	Ubuntu	operating	system.	Tomcat	7
and	MySQL	should	be	 installed	as	prerequisites.	 (Installing	Tomcat	7	will	also
install	Java	and	other	dependencies.)

1.	 To	 install	 Tomcat	 7	 to	 the	 /var/lib/tomcat7	 directory,	 run	 the	 following
command:
sudo	apt-get	install	tomcat7

2.	 The	 service	 should	 be	 up	 and	 running.	 Check	 that	 Tomcat	 is	 running
normally	by	issuing	the	following	command:
sudo	service	tomcat7	status

The	Tomcat	servlet	engine	should	be	running	with	its	own	process	identifier.
You	can	start	and	stop	Tomcat	using	the	following	commands:
sudo	service	tomcat7	start

sudo	service	tomcat7	stop

3.	Run	the	following	command	to	install	the	MySQL	server:
sudo	apt-get	install	mysql-server

4.	During	the	installation,	you	will	be	asked	to	provide	the	password	for	root.
Enter	the	password	to	complete	the	installation.

5.	 At	 the	 end	 of	 the	 installation,	MySQL	 server	 should	 be	 up	 and	 running.
Ensure	it’s	running	by	using	the	following	command:
sudo	service	mysql	status

You	can	start	and	stop	MySQL	using	the	following	commands:
sudo	service	mysql	start

sudo	service	mysql	stop

6.	Create	a	database	named	helpdesk:
Create	database	helpdesk

7.	 Copy	 the	 application.properties	 file	 located	 at	 Project
Location/src/main/webapp/WEB-INF/	 into	 the	 tomcat	 lib	 directory.	 These
are	the	properties	or	key-value	pair	used	in	our	project.

8.	 Copy	 the	 jstl.1.2.jar	 file	 located	 at	 Project	 Location/src/main/lib/	 into	 the
tomcat	lib	directory.	This	is	the	library	for	supporting	jsp	tags.

9.	 The	 Tomcat	 instance	 by	 default	 runs	 on	 8080	 port.	 Verify	 by	 checking

http://<yourhost>:8080/console.
10.	We	can	now	deploy	the	web	app	from	the	Tomcat	manager	console.	Click

the	Browse	 button	 to	 play	 the	 WAR	 file	 you	 created	 earlier,	 then	 click
Deploy,	as	shown	in	Figure	11.7.

Figure	11.7	Deploying	the	WAR	file

As	 you	 can	 see	 in	 Figure	 11.8,	 your	 application	 is	 deployed	 on	 the	 Tomcat
server	and	can	be	opened	from	http://<yourhost>:8080/helpdesk.

Figure	11.8	Location	of	our	app	on	the	Tomcat	server

The	whole	application	is	now	bundled	into	a	single	WAR	file.	At	this	point,	the
application	should	be	up	and	running	on	your	system.	Figure	11.9	shows	all	of
the	dependencies	across	various	modules.

Figure	11.9	Helpdesk	application’s	dependencies	across	various	modules

New	Requirements	and	Bug	Fixes
Imagine	the	application	is	up	and	running	and	serving	the	customers.	This	starts
the	software	maintenance	 lifecycle.	With	 time,	 new	 requests	 to	 update	 or	 alter
the	 application	 functionality	 will	 come	 in,	 and	 bugs	 may	 be	 uncovered	 by
customers.	All	 these	 requests	will	 require	 changing	 code	 and/or	 rebuilding	 the
application.	Let’s	understand	the	challenges	and	work	it	entails	to	maintain	our
monolithic	application.
Let’s	assume	we	need	to	add	an	extra	parameter	to	the	view	ticket	service	that

has	 very	 limited	 to	 no	 dependency	 on	 other	 components.	 With	 the	 following
code,	we	change	the	ticket	request:
Click	here	to	view	code	image

public	TicketResponse	createHdTicket(
							@Context	HttpHeaders	headers,
							TicketRequest	ticketRequest)
							throws	ServiceInvocationException{

The	following	allows	us	to	add	a	new	property	to	a	Plain	Old	Java	Object,	or
POJO	(web	model):
Click	here	to	view	code	image

@Component
		private	String	emailAddress;
@XmlElement
	public	String	getEmailAddress()	{
								return	emailAddress;
				}
public	void	setEmailAddress(String	emailAddress)	{
								this.emailAddress	=	emailAddress;
				}

Using	 the	 following	 code,	 we	 can	 add	 logic	 to	 the	 DAO	 layer	 to	 get	 that
property	from	the	database:
Click	here	to	view	code	image

private	String	saveToDatabase(TicketRequest	ticketRequest){
							//added	with	existing	one
								ticket.setEmailAddress(ticketRequest.getEmailAddress());
}

That’s	about	all	 for	 the	code	change,	which	 looks	pretty	straightforward.	But
what	 happens	 next?	 You	 need	 to	 do	 the	 following	 activities	 on	 all	 your
environments	and	deploy	the	code:

1.	Build	the	whole	web	application.	This	means	you	have	to	deploy	the	whole
application	again.

2.	 Perform	 regression	 testing	 of	 the	 whole	 application	 to	 make	 sure	 all	 the
other	capabilities	are	still	working	as	expected.

3.	Resolve	any	bugs	or	dependencies.
4.	Deploy	 the	 code	 to	 test	 the	 environment	 and	 perform	 a	 quality	 assurance
process.

5.	Deploy	the	changes	to	production	and	deploy.

If	 the	application	 is	not	deployed	 in	a	high	availability	 (HA)	mode,	 it	means
downtime	will	occur,	as	the	application	will	be	redeployed.
All	 these	 steps	 increase	 the	 time	 to	 release	 this	minor	 change	and	defeat	 the

whole	 agile	 principle.	 This	 is	 not	 accounting	 for	 ongoing	 changes	 where	 you
may	have	to	create	a	new	code	branch	and	merge	and	test	again.
There	are	other	issues,	as	well:

•	Addressing	bugs.	Each	bug	 fix	will	 require	a	whole	build	 to	be	deployed,
which	means	potential	downtime	for	the	system	if	proper	HA	is	not	built	into
the	 deployment	 architecture.	 In	 addition,	 depending	 on	 the	 systems
development	life	cycle	(SDLC)	methodology	used,	this	could	mean	a	lengthy
time	before	the	bug	fix	could	even	be	introduced.	For	critical	bugs,	it	usually
means	 creating	 and	 maintain	 a	 “hot	 fix”	 branch	 of	 the	 code,	 which	 can
complicate	the	code	base	and	create	problematic	merges	later	on.

•	Replacing	application	components.	Here	 is	another	case	where	 the	whole
application	has	to	be	potentially	refactored/reimplemented.	Let’s	assume	the
organization	would	like	to	use	cloud	services	for	ticket	management;	the	way
the	application	is	written	currently,	it	is	hard	to	decouple	the	related	modules
from	the	application.

•	Replacing	or	adding	new	technology	stack.	In	this	case,	you	don’t	have	the
freedom	 to	 choose	 the	 technology	 for	 new	modules/capabilities	 unless	 the
whole	 application	 is	 reimplemented.	 The	 organization	 is	 stuck	 with	 the
chosen	technology	because	of	the	monolithic	architecture.

•	 Scaling	 selectively.	 Say	 you	 want	 to	 scale	 just	 the	 ticketing	 module	 to
accommodate	 the	 usage	 patterns.	 In	 this	 case,	 it	 is	 complex	 because	 the
application	 components	 are	 tightly	 integrated	 as	 a	 monolithic	 application.
Separating	 ticketing	 alone,	 for	 example,	 requires	 a	 lot	 of	 code	 refactoring,
integration	 with	 the	 standalone	 ticketing	 system,	 testing,	 new	 deployment
architecture,	and	more.

•	Handling	 faults.	 In	 a	 monolithic	 application,	 a	 fault	 in	 one	 component
potentially	 breaks	 up	 the	whole	 application.	 Let’s	 suppose	 that	 the	 product
catalog	service	 is	down.	This	will	prevent	 the	users	 from	submitting	 a	new
work	ticket.	A	new	work	ticket	should	indicate	which	product	the	user	has	a
problem	 with	 for	 better	 ticket	 routing	 and	 faster	 problem	 resolution.
However,	 a	 bug	 in	 the	 product	 catalog	 service	 should	 not	 prevent	 the	 user
from	creating	the	 ticket	 itself—that	 is,	 it	shouldn’t	bring	down	the	 ticketing
service	itself.	But	given	the	monolithic	nature,	if	product	catalog	is	a	required
field	and	there	is	a	bug,	the	user	will	be	stuck	at	this	stage	even	though	he	or
she	could	have	described	the	issue.

While	 challenging	 for	 our	 application,	 these	 are	 the	 simple	 needs	 of	 today’s
digital	world.	It	becomes	very	costly	and	time	consuming	to	address	them	with
the	monolithic	approach	our	current	application	uses.	 In	 the	next	 two	chapters,
we	discuss	how	these	challenges	go	away	with	microservices	and	containers.

Chapter	12

Case	 Study:	 Migration	 to
Microservices

In	 Chapter	 11,	 “Case	 Study:	 Monolithic	 Helpdesk	 Application,”	 we	 built	 a
traditional	web-based	helpdesk	application	following	industry	standard	practices.
The	 purpose	 was	 to	 provide	 a	 close-to-real-world	 example	 and	 highlight	 the
challenges	that	organizations	are	facing	with	such	monolithic	applications	today.
In	 this	 chapter,	 we	 modify	 the	 same	 helpdesk	 application	 by	 using	 our
microservices	 knowledge,	 and	 we	 learn	 how	 some	 of	 the	 challenges	 we
highlighted	can	be	addressed.
In	Chapter	4,	“Migrating	and	Implementing	Microservices,”	we	discussed	two

possible	scenarios:	creating	a	new	application	with	microservices	and	migrating
a	 monolithic	 application	 to	 microservices.	 Since	 our	 helpdesk	 is	 an	 existing
monolithic	 application,	 here	 we	 follow	 the	 second	 scenario	 of	 migrating	 to
microservices.

Planning	for	Migration
Let’s	say	that	the	high-level	business	needs	for	our	helpdesk	application	were	as
follows	when	the	application	was	first	written,	back	in	2005:

•	Support	 roughly	500,000	customers	on	 the	web	where	 they	can	open	work
tickets	for	their	issues.

•	All	features	are	equally	important	and	should	be	available	at	all	times.

•	Application	is	horizontally	scalable.

•	Reduce	number	of	tickets	submitted	by	allowing	users	to	search	for	existing
solutions.

Now	 it	 is	 2018.	 Let’s	 review	 customer	 behavior	 and	 how	 this	 application	 is
being	utilized:

•	The	number	of	users	has	grown	to	1.5	million	and	is	expected	to	grow	to	3

million	over	the	next	2	years	due	to	the	boom	in	the	mobile	space.

•	The	top	two	features	being	utilized	by	most	users	are	ticketing	and	search.

•	There	are	very	few	changes	in	usage	of	features	like	message	boards.

•	Traffic	especially	peaks	 twice	a	year:	early	 summer	 (June)	and	 the	holiday
season	(November	and	December).

•	 The	 number	 of	 times	 ticketing	 services	 is	 affected	 due	 to	 impact	 of	 other
services,	such	as	product	catalog,	has	grown	considerably.

•	Technological	advances	in	natural	language	processing	means	that	customers
no	 longer	 expect	 just	 keyword-based	 search.	 They	 want	 the	 system	 to
understand	 plain	 English	 and	 be	 able	 to	 search	 the	 tickets	 and	 help	 them
appropriately.	In	other	words,	they	want	semantic	search.

•	 The	 greatest	 number	 of	 enhancement	 requests	 concerns	 ticketing
functionality.

It’s	clear	that	our	application	is	doing	really	well,	as	the	number	of	customers
has	expanded	 and	 the	 application	 is	 still	 serving.	Furthermore,	we	 can	 assume
that	the	application	has	scaled	well	horizontally	to	support	the	increase	in	users.
Scaling	horizontally	in	this	case	means	having	many	instances	of	the	application
with	active-active	database	machines	with	proper	 load	balancing	 in	 place.	The
point	to	note	is	that	we	are	talking	about	uniform	scalability;	 that	 is,	 the	whole
application	is	scaled,	not	just	some	specific	components,	such	as	ticketing,	that
might	be	have	been	needed	to	be	scaled.
Now	 assume	 you	 are	 given	 the	 task	 to	modify	 the	 application	 so	 that	 it	 can

meet	the	new	needs	and	can	scale	and	perform	to	support	3	million	users.	Also,
the	 application	 should	 be	 easy	 to	 evolve	 (open	 to	 change	 components)	 as	 the
technology	changes.
Given	what	we	have	 learned,	microservices	may	sound	 like	a	great	 solution.

The	application	we	deployed	in	Chapter	11	is	not	very	old.	In	fact,	it	is	already
using	 a	 model–view–controller	 (MVC)	 architecture	 and	 web	 services,	 so	 it
wouldn’t	be	a	wise	decision	to	start	from	scratch.	Also,	notice	that	the	new	needs
are	applicable	to	only	a	few	components	of	the	application,	which	further	makes
the	case	for	microservices.	So	how	do	we	do	it?	There	are	quite	a	few	ways	to	go
about	it.	Let’s	apply	our	learning	from	Chapter	4	and	convert	our	existing	project
to	a	microservices-based	application.

Applying	Microservices	Criteria
Recall	 that	 the	 microservices	 criteria	 outlined	 in	 Chapter	 4	 define	 one	 of	 the
possible	ways	to	select	and	prioritize	the	capabilities	of	a	monolithic	application
that	 should	 be	 migrated	 to	 microservices.	 We	 looked	 at	 seven	 best	 practices,
which	apply	in	our	scenario	as	we	consider	the	new	needs	and	user	behavior:

•	Scale.	From	the	first	two	new	requirements,	it	 is	clear	we	need	to	scale	the
application.	 The	 two	 most	 important	 and	 highly	 used	 components	 are
ticketing	 and	 search,	 so	 it	 makes	 sense	 to	 convert	 these	 services	 to
microservices.

•	 Improved	 technology	 alternatives,	 or	 polyglot	 programming.	 From	 the
new	requirements,	we	see	that	this	system	needs	a	smart	search,	and	Apache
Solr	 is	 an	 open	 source	 tool	 readily	 available	 for	 these	 purposes.	 It	 will
improve	 the	 search	 capabilities	 by	 providing	 relevant,	 context-sensitive
results.

•	Storage	 alternatives,	 or	 polyglot	 persistence.	 Our	monolithic	 application
has	been	using	the	MySQL	database	for	all	 the	data	storage	needs.	While	 it
makes	 sense	 for	 ticketing	 data	 to	 be	 stored	 in	 a	 relational	 database,	 our
application	can	be	improved	by	storing	product	catalog	data	in	an	in-memory
cache	with	a	flat-file	backing	store	for	the	following	reasons:

•	It	would	allow	for	easier	updates	by	simply	dropping	updated	files.
•	 Since	 there	 are	 no	 relational	 queries	 or	 joins,	 simply	 reading	 the	 file	 in-
memory	as	a	keyed	list	would	increase	speed.

•	Changes.	Given	 that	most	 enhancements	 have	 been	 in	 ticketing	 logic,	 per
requirements,	 it	makes	 sense	 to	 convert	 ticketing	 to	 a	microservice.	By	 the
same	logic	and	per	our	new	requirements,	it	would	not	make	much	sense	to
convert	the	message	board	as	a	microservice.

•	Deployment.	 In	our	application,	 there	 is	no	deployment	complexity	 in	any
given	component,	so	we	can	call	it	not	applicable.

•	Helper	services.	Per	the	new	requirements,	the	existing	ticketing	flows	have
been	 impacted	due	 to	 unavailability	of,	 or	 issues	with,	 the	product	 catalog.
We	 must	 short-circuit	 this	 service,	 which	 means	 that	 even	 if	 the	 product
catalog	goes	down,	our	ticketing	should	work	as	expected.	This	requirement
qualifies	the	product	catalog	service	to	be	converted	to	a	microservice.

The	only	requirement	we	have	not	discussed	is	that	of	heavy	seasonal	traffic.
Basically,	 this	 issue	 can	 be	 addressed	 easily	 within	 the	 current	 version	 of	 the
application	 by	 adding	 application	 servers	 and	 databases	 to	 scale	 horizontally
during	 the	 high-traffic	 seasons	 and	 then	 shrinking	 them	 back	 during	 normal
traffic	times.	But	based	on	what	we	know	about	microservices	and	the	way	we
are	converting	the	existing	services,	it	would	be	more	cost	effective	to	scale	the
components	with	 expected	higher	 traffic.	We	 cover	 this	 aspect	 of	migration	 to
microservices	 in	 Chapter	 13,	 “Case	 Study:	 Containerizing	 a	 Helpdesk
Application.”

Conversion	Summary
Per	 the	 new	 requirements	 and	our	microservices	 criteria,	we	 conclude	 that	 the
following	services	be	converted	to	microservices	architecture:

•	Product	catalog

•	Ticketing

•	Search

Further,	 we	 will	 add	 a	 Solr	 search	 engine	 to	 our	 application.	 In	 the	 current
application,	searches	are	done	by	database	 scan,	which	 is	 a	very	crude	way	of
implementing	 search	 functionality.	 This	 method	 simply	 matches	 text	 against
available	data	in	the	database.	Neither	the	quality	of	results	nor	the	performance
match	the	caliber	of	today’s	technologies.
Let’s	 briefly	 discuss	 Solr.	 (For	 detailed	 installation	 and	 configuration

instructions,	 refer	 to	 Appendix	 B.)	 Solr	 is	 a	 search	 engine	 platform	 based	 on
Apache	Lucene.	 It	 is	written	 in	Java	and	uses	 the	Lucene	 library	 to	 implement
indexing.	It	can	be	accessed	using	a	variety	of	REST	APIs,	including	XML	and
JSON.	The	basic	capabilities	include

•	Advanced	full-text	search

•	Optimized	for	high-volume	web	traffic

•	Comprehensive	HTML	administration	interfaces

•	 Server	 statistics	 exposed	 over	 Java	 Management	 Extensions	 (JMX)	 for
monitoring

•	 Linearly	 scalable,	 auto-index	 replication,	 and	 automatic	 failover	 and
recovery

•	Near-real-time	indexing

•	Flexible	and	adaptable	with	XML	configuration

•	Extensible	plugin	architecture

For	more	information,	visit	http://lucene.apache.org/solr.

Impact	on	Architecture
After	 the	 product	 catalog,	 ticketing,	 and	 search	 services	 are	 converted	 to	 self-
contained	standalone	microservices,	the	architecture	will	look	like	Figure	12.1.

Figure	 12.1	 Our	 new	 architecture,	 with	 self-contained	 and	 standalone
microservices

As	you	see,	services	such	as	catalog,	ticketing,	and	search	are	separated	out	of
the	 monolith	 paradigm	 and	 deployed	 as	 individual	 and	 independent
microservices.	 These	 individual	 microservices	 are	 deployed	 behind	 a	 load
balancer	such	as	HAProxy	for	high	availability	and	scale.

Converting	to	Microservices
Now	that	we	understand	the	new	microservices-based	architecture,	let’s	convert

http://lucene.apache.org/solr

the	 identified	 three	 components	 of	 the	 monolithic	 application	 to	 independent
microservices.	We	 cover	 the	 product	 catalog	microservice	 conversion	 in	 detail
but	 leave	 ticketing	and	 search	 for	 you	 to	 converted	 in	 a	 similar	manner	 to	get
some	hands-on	experience.	You	can	also	refer	to	the	code	base	posted	on	GitHub
at	https://github.com/kocherMSD/Helpdesk_Microservices.git.

Product	Catalog
For	this	project,	we	migrate	catalog	service-specific	code	out	of	the	monolithic
helpdesk	 application	 into	 its	 own	 build	 entity.	 This	 involves	 taking	 out	 the
interfaces,	 service	 implementations,	 helper	 classes,	 and	 configuration	 files	 and
creating	a	new	build	artifact.	This	new	build	artifact	 includes	reference	to	only
those	third-party	dependencies	actually	required	by	the	new	build	artifact.
Next,	we	modify	the	catalog	service	to	use	Apache	Maven	instead	of	Apache

Ant,	mainly	because	Apache	Maven	is	a	newer,	more	flexible	build	system	that
has	superior	external	dependency	management	features.
Last,	 we	 modify	 the	 catalog	 service	 build	 artifact	 to	 upgrade	 third-party

external	 dependencies	 to	 the	 latest	 major	 release.	 By	 doing	 so,	 we	 gain	 the
ability	to	leverage	improved	implementations	of	third-party	dependencies.
Following	 are	 the	 detailed	 steps	 for	 the	 product	 catalog	 microservice

conversion.

Steps	for	Conversion
We	create	the	product	catalog	microservice	by	reusing	the	monolithic	application
code	base.	Basically,	 it	 is	going	 to	be	a	separate	project	and	a	service	 in	 itself.
Here	are	the	steps:

1.	Create	a	new	project	in	Eclipse	named	catalog-svc.

2.	 Download	 and	 install	 Apache	 Maven.	 Refer	 to
https://maven.apache.org/install.html.

3.	Create	a	Maven	pom.xml	 file,	 and	define	 the	 required	dependency	 for	 the
project	in	 the	root	directory.	You	can	find	the	details	 in	 the	code	posted	on
GitHub:
https://github.com/kocherMSD/Helpdesk_Microservices/blob/master/catalog-
svc/pom.xml.

4.	 Create	 the	 service	 interface,	 service	 implementation,	 service	 helper,	 data
access	object	(DAO)	classes,	and	application	context	XML	file.

https://github.com/kocherMSD/Helpdesk_Microservices.git
https://maven.apache.org/install.html
https://github.com/kocherMSD/Helpdesk_Microservices/blob/master/catalog-svc/pom.xml

Based	on	the	microservice	definition,	we	will	have	a	single	interface,	service
implementation,	 service	 helper,	 and	 service	 DAO	 Java	 class.	 Here	 is	 the
pseudocode	for	our	service,	but	you	are	strongly	encouraged	to	look	into	this
code,	which	is	available	on	GitHub:
a.	Service	interface	pseudocode:
Click	here	to	view	code	image

public	interface	CatalogService	extends	BeanFactoryAware,
ApplicationContextAware	{
							public	abstract	ProductDetailsResponse	getCatalog(
									@Context	HttpHeaders	headers,	
									String	userId)	
									throws	ServiceInvocationException;	
	
public	abstract	CatalogResponse	addCatalog(
		
							@Context	HttpHeaders	headers,
									CatalogRequest	req)
									throws	ServiceInvocationException;

	public	abstract	CatalogResponse	updateCatalog(
								@Context	HttpHeaders	headers,
								CatalogRequest	req)
								throws	ServiceInvocationException;

	public	abstract	CatalogResponse	deleteCatalog(
								@Context	HttpHeaders	headers,
								CatalogRequest	req)
								throws	ServiceInvocationException;
				}

b.	Service	implementation	pseudocode:
Click	here	to	view	code	image

								@Component
								@Path("/CatalogService")
	public	class	CatalogServiceImpl	implements
	CatalogService	{

							@Override
							@GET
							@Consumes({"application/xml",	"application/json"})
							@Produces({"application/json"})

							@Path("/getCatalog/{customerId}")
	public	ProductDetailsResponse	getCatalog(
									@Context	HttpHeaders	headers,
									@PathParam("customerId")	String	customerId)
									throws	ServiceInvocationException		{
						//To	Do	Task
											}

c.	Service	helper	pseudocode:
Click	here	to	view	code	image

							public	class	CatalogServiceHelper	{	
							CatalogDao	dao=null;
																		//To	Do
			}

d.	DAO	class	pseudocode:
Click	here	to	view	code	image

								public	class	CatalogDao	extends	DataService{
								//To	Do	
}

5.	Modify	the	applicationContext.xml	file	for	only	this	microservice’s	beans.

The	new	project	structure	should	look	like	Figure	12.2.

Figure	12.2	The	new	project	structure

6.	Run	mvn	install	from	the	pom.xml.	This	will	create	a	catalog-svc	WAR
file.

7.	 Deploy	 the	WAR	 file	 on	 the	 same	monolithic	 application	 Tomcat	 server:
http://<host>:<port>/catalog-svc/rest/catalogservice/<Rest	 Verb>.	 The	 web
service	endpoint	for	our	standalone	microservice	will	be	changed.

8.	 Remember	 that	we	 are	 still	 using	 the	 same	 database.	 Before	 building	 the
WAR	 file,	 change	 the	 database	 configuration	 in	 applicationContext.xml	 as
follows;	 change	 the	 url,	 username,	 and	 password	 properties	 of	 the
DataSource	bean	according	to	your	database	credentials:
Click	here	to	view	code	image

<bean	id="DataSource"	destroy-method="close"
				class="org.apache.tomcat.jdbc.pool.DataSource">
						<property	name="driverClassName"
																value="com.mysql.jdbc.Driver"	/>
						<property	name="url"
																value="jdbc:mysql://<dbhost>:
																<dbport>/<dbname>"/>
						<property	name="username"	value="<Username>"/>
						<property	name="password"	value="<Password>"/>
						<property	name="initialSize"	value="5"/>
						<property	name="maxActive"	value="50"/>
						<property	name="validationQuery"
																value="select	1	from	dual"/>
						<property	name="testWhileIdle"	value="true"/>
						<property	name="testOnBorrow"	value="true"/>
						<property	name="minIdle"	value="020000"/>
						<property	name="minEvictableIdleTimeMillis"
																value="30000000"/>
						<property	name="timeBetweenEvictionRunsMillis"
																value="6000000"/>
						<property	name="removeAbandoned"	value="true"/>
						<property	name="removeAbandonedTimeout"
																value="30000"/>
						<property	name="logAbandoned"	value="true"/>
						<property	name="maxWait"	value="120000"/>
</bean>

Ticketing
Similar	to	the	product	catalog,	migrating	the	ticketing	service–specific	code	out
of	 the	 monolithic	 helpdesk	 application	 into	 its	 own	 build	 entity	 also	 includes
taking	 out	 the	 interfaces,	 service	 implementations,	 helper	 classes,	 and
configuration	 files	 and	 creating	 a	 new	 build	 artifact.	 This	 new	 build	 artifact
includes	 reference	 to	 only	 those	 third-party	 dependencies	 actually	 required	 by
the	new	build	artifact.
The	ticketing	service	will	be	modified	to	use	Apache	Maven	instead	of	Ant	for

the	same	reasons	we	used	it	in	the	product	catalog	service	modification.
The	steps	for	the	ticketing	microservice	conversion	are	exactly	the	same	as	for

converting	the	product	catalog	service.

Search
As	discussed,	we	have	a	very	rudimentary	database-based	search	service.	Now
we	 are	 going	 to	 add	 the	 Solr	 search	 component	 to	 provide	 us	 with	 advanced
search	capabilities.	We	will	still	perform	searches	the	old	way,	but	we	will	also
perform	the	Solr-based	search	and	show	results	from	both	on	the	user	interface,
indicating	them	as	basic	and	advanced.	For	that	reason,	we	will	also	modify	the
search	view	to	include	this	enhancement.

Database-Based	Search
Search	service–specific	code	is	migrated	similarly	to	the	way	we	migrated	it	for
the	 other	 two	 services.	 The	 effort	 includes	 taking	 out	 the	 interface,	 services
implementations,	helper	classes,	and	configuration	files	and	creating	a	new	build
artifact.	Again,	we	will	leverage	Apache	Maven,	which	will	help	in	getting	third-
party	external	dependencies	required	by	our	service.

Solr-Based	Search
The	 first	 step	 in	 adding	 Solr-based	 search	 is	 to	 install	 and	 configure	 the	 Solr
engine.	 Refer	 to	 Appendix	 B	 for	 detailed	 instructions.	 Once	 it	 is	 up,	 we	 can
create	our	microservice.	We	will	build	an	advanced	search	service	as	a	separate
entity	and	also	leverage	Apache	Maven	here	to	build	our	artifacts.
Following	is	the	Solr	implementation	code	snippet	from	the	same	search	web

service:
Click	here	to	view	code	image

@POST

@Consumes({"application/xml",	"application/json"})
@Produces({"application/json"})
@Path("/solrSearch")
public	QueryResponse	search(
@Context	HttpHeaders	headers,
SearchRequest	request)

The	code	to	query	the	Solr	interface	follows:
Click	here	to	view	code	image

HttpSolrServer	solr	=	new	HttpSolrServer(
																				"http://<ip	of	solr	host>
																					:8983/solr/helpdesk");
SolrQuery	query	=	new	SolrQuery();
query.setQuery(request.getQuery());
query.setStart(0);
QueryResponse	response	=	solr.query(query);

You	can	do	a	lot	with	the	Solr,	such	as	apply	search	filters,	but	these	topics	are
out	 of	 this	 book’s	 scope.	 For	 more	 information,	 refer	 to
http://lucene.apache.org/solr.
Now,	let’s	review	the	application	build	and	deployment	process.

Application	Build	and	Deployment
We	 have	 converted	 the	 following	 three	 components	 from	 the	 monolithic
application	and	created	them	as	individual	microservices:

•	Product	catalog

•	Ticketing

•	Search

Let’s	look	at	what	changes	have	gone	into	these	microservices,	including	how
to	build,	configure,	and	deploy	them.

Code	Setup
The	original	monolithic	application	used	Apache	Ant	to	build	the	project.	As	the
evolving	project	 based	 on	microservices	 has	 become	 increasingly	modularized
and	 must	 manage	 dependencies,	 the	 individual	 microservices	 have	 adopted
Apache	Maven	as	the	build	tool.	Ant	has	no	built-in	capability	for	dependency

http://lucene.apache.org/solr

management,	 although	 it	 can	 be	 supplemented	with	 Ivy.	 This	 illustrates	 a	 key
concept:	that	each	microservice	can	have	its	own	way	of	building	its	source	code
if	required.
Code	 for	 these	 individual	 microservices	 is	 available	 at	 GitHub:

https://github.com/kocherMSD/Helpdesk_Microservices.git.

Building	the	Microservices
You	can	build	 individual	microservices	 in	 two	ways:	 via	 the	 command	 line	or
automatically	from	an	integrated	development	environment	such	as	Eclipse:

•	Building	via	the	command	line.	To	build	a	Maven	project	via	the	command
line,	run	the	mvn	command	from	the	command	line.	The	command	should	be
executed	in	the	project	directory	that	contains	the	relevant	POM	file.	To	build
the	 individual	 microservices,	 the	 command	 to	 run	 is	 mvn	 clean
package.	This	command	ensures	the	artifacts	are	cleaned	up	and	packaged
into	a	WAR	file	that’s	ready	to	be	deployed.

•	Building	 from	Eclipse.	 Once	 you	 have	 the	 project	 imported	 into	 Eclipse,
right-click	the	project	name,	choose	Run	As,	and	select	Run	configurations.
In	 the	 Run	 configurations	 window,	 enter	 clean	 package	 against	 the	 goals
field	and	click	Run.	This	should	build	the	code	clean	and	produce	the	WAR
file,	 which	 is	 ready	 to	 be	 deployed	 in	 an	 application	 container	 such	 as
Tomcat.

Deploying	and	Configuring
There	are	quite	a	 few	options	 for	deploying	microservices.	Each	option	has	 its
pros	 and	 cons,	 so	 let’s	 quickly	 see	 what	 they	 are.	 In	 Chapter	 13,	 we’ll	 delve
deeper	 into	 the	 deployment	 space	 along	 with	 automated	 deployment,	 scaling,
and	so	on.

•	Multiple	microservices	within	a	single	machine.	In	this	option,	the	strategy
is	to	deploy	more	than	one	microservice	within	the	same	machine	(physical
or	virtual).	The	major	advantage	of	this	approach	is	that	the	resource	usage	is
relatively	 efficient	 because	 multiple	 services	 or	 instances	 are	 sharing	 the
same	resources	(CPU,	memory,	I/O,	etc.).	The	drawback	is	that	there	is	little
or	 no	 isolation	 of	 these	 services	 unless	 each	 service	 is	 a	 separate	 process.
Also,	 a	misbehaving	 service	 can	 potentially	 consume	 all	 of	 the	memory	 or
CPU	of	the	host.

https://github.com/kocherMSD/Helpdesk_Microservices.git

•	 Single	 microservice	 per	 virtual	 machine.	 The	 major	 benefit	 with	 this
approach	is	that	each	service	runs	in	complete	isolation	because	it’s	wrapped
inside	 a	 virtual	machine.	 Each	microservice	 has	 full	 access	 to	 its	 allocated
memory,	CPU,	and	I/O.	However,	the	major	drawback	with	this	approach	is
the	 lack	 of	 efficient	 resource	 utilization.	 Virtual	 machines	 may	 well	 be
underutilized,	 but	 again,	 this	 drawback	 can	 be	 overcome	 by	 allocating
sufficient	resources	and	putting	the	virtual	machine	on	auto-scale.

•	Single	microservice	per	container.	Deploying	a	microservice	in	a	container
is	simply	packaging	the	service	to	run	inside	a	container.	Once	you	have	the
service	packaged	in	a	container,	you	can	launch	containers	at	will,	depending
on	 the	varying,	on-demand,	 and	 real-time	application	needs.	The	benefit	of
this	approach	is	that	each	container	runs	in	isolation.	Resources	consumed	by
the	containers	can	be	monitored,	controlled,	and	managed.	However,	unlike
virtual	 machines,	 these	 containers	 are	 very	 lightweight	 and	 easy	 to	 build,
package,	 and	 start.	 They	 start	 extremely	 fast	 because	 there’s	 no	 operating
system	 to	bootstrap	 like	with	a	virtual	machine.	The	major	disadvantage	of
this	 approach	 is	 the	 technological?	maturity.	With	 the	 advent	 of	Docker	 in
2013,	containers	are	far	more	accessible	to	mainstream	teams	now;	however,
the	technology	is	still	evolving	to	address	issues	such	as	security,	managing
containers	at	scale,	and	so	on.

For	 simplicity,	 we	 will	 deploy	 our	 new	 microservices	 in	 the	 same	 Tomcat
server	where	we	 have	 hosted	 the	monolithic	 application.	 In	 Chapter	 13,	we’ll
take	 these	microservices	 and	 package	 them	 in	 a	Docker	 container	 and	 deploy
them	as	individual	microservices.
Following	 are	 the	 steps	 to	 deploy	 the	 helpdesk	 application	 with	 the	 new

microservices:

1.	 We	 need	 to	 point	 the	 newly	 created	 microservices	 from	 our	 existing
monolithic	 application.	 To	 do	 so,	 modify	 the	 property	 file,
Application.properties,	 by	 changing	 the	 endpoints	 for	 our	web	 services,	 as
follows:
Click	here	to	view	code	image

endPoints.serachEndPoint=
		http://host:port/search-svc/rest/SerachService/search
endPoints.getCatalog=
		http://host:port/ticketing-svc/rest/CatalogService/getCatalog
endPoints.createTicket=

http://host:port/search-svc/rest/SerachService/search
http://host:port/ticketing-svc/rest/CatalogService/getCatalog

		http://host:port/catalog-svc/rest/TicketService/
		createTicket

2.	 To	 change	 the	 search	 view,	 modify	 the	 search.jsp	 file	 in	 the	 monolithic
application	 to	 include	 an	 advanced	 search	button;	 call	 the	Solr	 search	web
service	end	point	from	the	JavaScript	function:
Click	here	to	view	code	image

function	solrsearch()
{
				var	solrSearchEndPoint=
							<%=	props.getProperty(
										"endPoints.solrSearchEndPoint")	%>';
				var	searchText=document.getElementById("searchText").value;
				if(searchText=='')
				{
									alert('Empty	text.	Please	provide	value	in	text');
				}

				var	dataToSend=	{"query":searchText};
				$.ajax({headers:	{
								'Accept':	'application/json',
								'Content-Type':	'application/json'
				},
				url:	solrSearchEndPoint,
				type:	'POST',
				dataType:	'json',
				data:	JSON.stringify(dataToSend)				,
				success:	function(data,	textStatus,	jqXHR)	{
		
				$("#solrresults").empty();
				var	docs	=	data.results;
				$.each(docs,	function(i,	item)	{
												$('#solrresults').prepend($('<div>'	+
													objToString(item)	+	'</div>'));
				});
				var	total	=	'Found	'	+	docs.length	+	'	results';
				$('#solrresults').prepend('<div>'	+	total	+	'</div>');
				}
				}).fail(function	(jqXHR,	textStatus,	error)	{
				//	Handle	error	here
				alert(jqXHR.responseText);
				});

http://host:port/catalog-svc/rest/TicketService/

}

3.	Create	the	individual	microservices	WAR	files	by	building	them	separately,
as	 shown	 in	 Figure	 12.3.	 Use	 the	 Apache	 Maven	 pom.xml,	 as	 outlined
earlier	in	this	chapter.

Figure	12.3	Structure	for	a	microservice	in	Eclipse

4.	Execute	the	Maven	build,	as	shown	in	Figure	12.4.

Figure	12.4	Executing	the	Maven	build

You	should	see	the	message	shown	in	Figure	12.5	if	the	build	is	successful.

Figure	12.5	Build	output

5.	Follow	the	previous	steps	 for	 the	rest	of	 the	microservices.	Copy	all	 these
WAR	files	into	the	Tomcat	webapp	directory.

Your	deployed	directory	structure	will	look	like	the	following	in	Linux:
Click	here	to	view	code	image

search-svc			catalog-svc			docs			helpdesk			host-manager
ROOT			ticketing-svc.war			search-svc.war			catalog-svc.war
examples
helpdesk.war	manager			ticketing-svc

As	 you	 can	 see,	 along	 with	 helpdesk.war,	 there	 are	 three	 additional
microservices	deployed	in	the	same	Tomcat	container.

New	Requirements	and	Bug	Fixes
We	 have	 successfully	 migrated	 our	 monolithic	 application	 architecture	 to
microservices	based	on	new	business	needs.	We	also	know	business	needs	will
continue	to	evolve.	Let’s	look	at	some	ways	to	manage	possible	change	requests
with	a	microservices-based	architecture.
Suppose	we	need	to	add	to	the	view-ticket	service	an	extra	parameter	that	has

limited	 to	 no	 dependency	 on	 other	 components.	 Using	 the	 following	 code
snippet,	we	can	change	the	ticket	request:
Click	here	to	view	code	image

public	TicketResponse	createHdTicket(
							@Context	HttpHeaders	headers,
							TicketRequest	ticketRequest)
							throws	ServiceInvocationException{

The	following	adds	a	new	property	to	the	Plain	Old	Java	Object	(web	model):
Click	here	to	view	code	image

@Component
		private	String	emailAddress;
@XmlElement
	public	String	getEmailAddress()	{
								return	emailAddress;
				}
public	void	setEmailAddress(String	emailAddress)	{
								this.emailAddress	=	emailAddress;
				}

The	 following	 code	 allows	 us	 to	 add	 logic	 to	 the	 DAO	 layer	 to	 get	 that
property	from	the	database:
Click	here	to	view	code	image

private	String	saveToDatabase(TicketRequest	ticketRequest){
							//added	with	existing	one
								ticket.setEmailAddress(ticketRequest.getEmailAddress());
}

Notice	 that	 this	 ticketing	 change	 does	 not	 affect	 any	 other	 service.	We	 just
need	to	test	this	service	and	deploy	it,	and	we	should	be	good	to	go.	Making	this
change	 in	 a	 monolithic	 application	 would	 require	 us	 to	 build	 the	 complete
application	 and	 do	 thorough	 regression	 testing,	 which	 is	 time-	 and	 resource-
consuming.	 It	 is	 a	 simple	 example,	 but	 it	 illustrates	 the	 difference	 between
making	a	change	in	a	microservices	application	and	making	the	same	change	in
a	monolithic	application.
Now	let’s	go	through	the	same	challenges	we	highlighted	with	the	monolithic

application	 in	 Chapter	 11	 to	 see	 if	 microservices	 really	 helped	 solved	 those
challenges:

•	Addressing	bugs.	Only	the	portion	of	the	application	that	has	the	bug	needs
to	be	fixed.	If	the	bug	is	in	the	code	of	one	microservice,	then	we	just	need	to
touch	that	particular	microservice,	fix	the	code,	and	deploy.	Also,	since	each
microservice	will	be	load	balanced	in	a	typical	deployment,	you	can	deploy
the	fix	serially	so	as	to	not	impact	the	application	availability.	If	the	bug	is	in
the	monolithic	code,	you	still	need	to	follow	the	normal	process,	but	notice
that	 the	 microservices	 remain	 untouched	 and	 no	 retesting	 of	 those
components	is	required;	hence,	there	is	a	reduced	release	cycle	time.

•	Replacing	application	components.	Let’s	assume	the	same	case	where	we
want	 to	 use	 cloud	 services	 for	 ticket	 management;	 all	 we	 need	 is	 a
configuration	change,	as	we	discussed	earlier	 in	 the	chapter,	 to	point	 to	 the
cloud	service	end	points.	Simple	enough!

•	Replacing	 or	 adding	 new	 technology	 stack.	 If	 it	 ever	 makes	 sense	 to
develop	 an	 existing	 or	 new	 service	 using	 a	 different	 technology	 stack,	 say
PHP/NOSQL,	 the	 developer	 has	 full	 freedom	 to	 do	 so	 with	 minimal
dependencies.

•	 Scaling	 selectively.	 One	 of	 the	 biggest	 advantages	 of	 microservices	 is
selective	 scaling.	 As	 you	 noticed	 in	 the	 new	 architecture	 diagram,	 each

microservice	 can	 be	 load	 balanced.	 If	 there	 is	more	 traffic	 expected	 on	 the
ticketing	layer,	you	can	easily	spin	up	more	virtual	machines	or	containers	for
the	ticketing	service	without	touching	any	other	service	or	monolithic	part	of
the	 application.	 This	 saves	 time,	 resources,	 and	 expenses	 on	 unnecessary
scaling	of	the	complete	application.	We	will	do	this	in	the	next	chapter.

•	Handling	faults.	An	issue	or	bug	in	a	particular	microservice	will	not	impact
the	whole	application	if	designed	properly.	The	worst-case	scenario	may	be
that	 a	particular	microservice	could	be	 impacted,	but	 the	 rest	of	 the	 system
will	 still	be	 functional.	Think	of	an	e-commerce	site	based	on	a	monolithic
architecture.	 Say	 the	 product	 rating	 part	 of	 the	 application	 crashes.
Depending	how	 the	monolithic	 application	 is	written,	 this	may	 bring	 down
the	whole	application	even	though	there	were	no	issues	with,	say,	the	cart	and
checkout	part	of	the	application.	With	microservices,	the	worst	outcome	of	a
product	 rating	 microservice	 crashing	 would	 be	 that	 users	 cannot	 submit
ratings.	Since	shopping	cart	and	checkout	services	are	up,	users	will	still	be
able	to	complete	the	shopping,	causing	limited	impact	to	business.

Scalability	 is	 the	biggest	challenge.	Running	a	 few	microservices	 is	 fine,	but
they	are	meant	to	comprise	large	systems,	with	thousands	of	microservices	and
lots	of	scaling	up	and	down.	Let’s	now	go	and	containerize	our	microservices	in
the	next	chapter	so	we	can	scale	and	manage	them	more	easily.

Chapter	13

Case	 Study:	 Containerizing	 a
Helpdesk	Application

In	 Chapter	 12,	 “Case	 Study:	 Migration	 to	 Microservices,”	 we	 created	 three
microservices	 based	 on	 our	 needs	 and	 the	 criteria	 we	 learned	 throughout	 this
book.	 The	 next	 question	 becomes,	 how	 do	 we	 scale	 this	 model?	 In	 the	 real
world,	 a	 large-scale	 application	 may	 have	 hundreds	 to	 thousands	 of
microservices.	 In	 this	 chapter,	we	 use	 our	 knowledge	 of	Docker	 containers	 to
deploy	and	scale	the	microservices	on	demand.
The	monolithic	part	of	our	application	will	continue	 to	run	as	 is,	but	we	will

containerize	the	microservices	part	of	the	application,	which	includes	ticketing,
product	 catalog,	 and	 search,	 and	 make	 appropriate	 changes	 to	 the	 monolithic
application.

Containerizing	Microservices
In	 this	 section,	we	containerize	 the	product	catalog	microservice	we	created	 in
the	Chapter	12.	Armed	with	our	knowledge	so	far,	containerizing	microservices
involves	the	following	steps:

1.	Make	a	list	of	dependencies	required	for	each	microservice.

2.	Build	the	binaries,	WAR	files,	and	so	on,	that	compose	the	microservice.
3.	Create	a	Docker	image	that	includes	items	in	the	previous	two	steps.
4.	Use	the	image	created	in	step	3	to	launch	one	or	more	containers.

Listing	Dependencies
Here	 is	 the	 list	 of	 software	 that’s	 required	 (dependencies)	 to	 run	 the	 product
catalog	microservice:

•	Tomcat:	Required	to	run	the	application	(product	catalog)	code

•	Java:	A	dependency	for	Tomcat	to	function	properly

•	MySQL	connector:	A	dependency	for	Tomcat	to	connect	to	MySQL

•	Apache	Maven:	To	be	installed	on	the	system	where	you	are	building	your
microservice	(for	reference,	see	https://maven.apache.org/install.html)

Build	Binaries	and	WAR	files
Now	that	we	have	identified	the	dependent	software	required	to	run	the	catalog
microservice,	 the	 next	 thing	 we	 need	 is	 the	 WAR	 file	 (binary)	 itself.	 Please
follow	the	following	instructions	to	build	and	produce	a	WAR	file	for	the	catalog
microservice.	For	 this	 task,	 clone	 the	code	 from	 the	GitHub	 repository	 for	our
catalog	 microservice:
https://github.com/kocherMSD/Helpdesk_Microservices.git
Since	we	are	building	our	first	microservice,	we	should	take	advantage	of	the

latest	toolset	available.	In	this	case,	we	use	Apache	Maven	to	build	the	WAR	file
instead	of	Apache	Ant	(as	we	did	for	our	monolithic	application)	because	Maven
is	a	more	advanced	build	automation	 tool..	For	example,	 it	also	downloads	 the
library	dependencies	required	for	the	project.
The	 next	 task	 is	 to	 verify	 that	 the	 Apache	 POM	 file	 is	 located	 in	 the	 root

directory	of	your	cloned	code.	The	POM	file	consists	of	the	dependencies,	such
as	the	Java	Runtime	version,	the	Maven	central	repository	information,	and	a	list
of	required	JAR	files.
If	 it	 is	 all	 there,	 then	 the	 next	 step	 is	 to	 build	 the	 WAR	 file.	 Run	 mvn

install	from	the	command	line	at	the	project	root	directory,	or	right-click	on
the	POM	file	in	the	Eclipse	editor	and	select	mvn	install.	A	folder	named	Target
should	have	been	created	in	the	root	directory,	which	will	have	the	WAR	file.

Creating	a	Docker	Image
Let’s	look	at	how	to	create	a	Docker	image	for	our	product	catalog	service.	The
approach	to	create	images	for	other	microservices,	such	as	ticketing,	is	the	same
except	that	you	include	the	appropriate	binaries	of	the	chosen	microservice	and
the	environment	dependencies.
As	we	learned	in	previous	chapters,	the	right	way	to	create	a	Docker	image	is

through	a	Dockerfile,	which	includes	all	the	dependencies	mentioned	previously.
Building	that	Dockerfile	will	give	us	the	image	we	need	to	deploy	our	service.
Let’s	 start	 writing	 the	 Dockerfile.	 Please	 note	 we’ll	 be	 building	 this	 file	 in

multiple	 steps	 so	 that	 it	 is	 easy	 to	 explain	 the	 content.	 Make	 sure	 you	 don’t
create	multiple	files	if	you	are	executing	things	in	parallel:

https://maven.apache.org/install.html
https://github.com/kocherMSD/Helpdesk_Microservices.git

Click	here	to	view	code	image

#	Based	on	Ubuntu	17.04
FROM	ubuntu:17.04
#	Environment	variables	to	install	Tomcat	7;	you	may	change	the
#	minor	version	of	Tomcat	according	to	your	needs.	To	change	the
#	major	version	as	well	(e.g.,	to	Tomcat	8),	you	must	be	sure	to
#	change	the	TOMCAT_LOCATION	variable	as	well.

ENV				TOMCAT_VERSION=7.0.81
ENV				TOMCAT_FILENAME=apache-tomcat-$TOMCAT_VERSION.tar.gz
ENV				TOMCAT_DIRECTORY=apache-tomcat-$TOMCAT_VERSION
ENV				TOMCAT_LOCATION=http://www-eu.apache.org/dist/tomcat/	\
tomcat-7/v$TOMCAT_VERSION/bin/$TOMCAT_FILENAME

Let’s	take	a	closer	look	at	some	of	the	code:

•	FROM	ubuntu	 tells	what	 environment	 the	 catalog	 service	will	 run	 in.	 In
this	case,	the	catalog	service	will	be	running	under	an	Ubuntu	environment.

•	The	ENV	command	defines	environment	variables	that	can	be	used	within	the
Dockerfile.

The	next	step	is	to	pull	and	install	all	the	dependencies.	Append	the	following
to	the	existing	file:
Click	here	to	view	code	image

#	Fetch	Tomcat;	install	required	utilities	such	as	wget	&	JDK1.8.
#	Clean	up	apt	cache,	as	"apt-get	update"	is	going	to	bust	the	cache
#	always.
RUN	apt-get	update	&&	\
				apt-get	install	-y	wget	&&	\
				apt-get	install	-y	default-jdk	&&	\
				rm	-fr	/var/lib/apt/lists/*	&&	\
				wget	$TOMCAT_LOCATION

Here’s	what	we’re	doing	with	this	code:

•	apt-get	is	the	package	manager	in	Ubuntu,	which	simplifies	the	lifecycle
(install/update/delete)	of	packages.	It	is	recommended	to	always	do	an	apt-
get	 update.	 This	 command	 gets	 the	 latest	 list	 of	 packages	 and	 their
versions	from	the	Ubuntu	repository.

http://www-eu.apache.org/dist/tomcat/

•	The	apt-get	install	 command	 installs	 the	Wget	package.	Wget	 is	 a
free	utility	that’s	used	to	download	files	from	the	web.	We	need	this	utility	to
download	Tomcat	from	the	web.

•	 The	 install	 command	 installs	 the	 Java	 development	 kit.	 This	 is	 a
dependency	for	Tomcat.

•	When	the	command	apt-get	update	is	run,	it	downloads	the	packages
from	 the	 Ubuntu	 repository	 and	 stores	 them	 in	 the	 directory	 named
/var/lib/apt/lists.	This	directory	could	be	 large,	which	can	make	our	Docker
image	look	big	too.	Since	the	installation	is	complete,	we	can	safely	remove
the	 contents	 in	 this	 directory,	 and	 that’s	what	 the	rm	 command	does.	 It’s	 a
best	practice	in	writing	Dockerfiles.

•	wget	is	the	utility	we	installed	earlier	in	the	code,	and	it	downloads	Tomcat
from	the	web.

One	key	thing	to	note	is	that	all	of	these	commands	are	run	in	a	single	line	to
reduce	 the	 number	 of	 layers	 in	 the	 Docker	 image.	 RUN	 is	 the	 command	 that
instructs	Docker	to	run	any	command	within	the	environment	(in	 this	case,	 it’s
the	Ubuntu	environment).	If	we	choose	CentOS	as	the	environment	(e.g.,	FROM
CentOS),	then	the	same	command	will	become	RUN	yum,	because	yum	is	the
package	 manager	 in	 CentOS	 just	 as	 apt-get	 is	 the	 package	 manager	 in
Ubuntu.
Now	 that	 we	 have	 downloaded	 Tomcat,	 let’s	 append	 the	 following	 to	 the

existing	file:
Click	here	to	view	code	image

#	Install	Tomcat	under	/opt	and	rename	the	directory	"tomcat"
RUN	tar	-xf	$TOMCAT_FILENAME	-C	/opt	&&	\
				mv	/opt/$TOMCAT_DIRECTORY	/opt/tomcat

Here,	we	are	 installing	Tomcat	 into	our	 /opt	directory	and	 then	 renaming	 the
directory	/opt/tomcat.
Now	let’s	deploy	our	microservice:

Click	here	to	view	code	image

#	Deploy	product	catalog	service	to	Tomcat
ADD	catalog-svc.war	/opt/tomcat/webapps/

#	Expose	port	to	the	host	system

EXPOSE	8080

#	Run	tomcat	in	the	foreground
CMD	["/opt/tomcat/bin/catalina.sh",	"run"]

Let’s	look	closer	at	this	snippet:

•	The	ADD	command	instructs	Docker	 to	copy	the	catalog-svc.war	file	 to	 the
Tomcat	webapps	 directory	 because	 we	want	 the	 catalog	 service	 to	 start	 as
soon	as	the	container	is	launched.

•	Expose	 is	a	command	 that	exposes	Tomcat’s	port	 to	 the	host	machine	on
which	the	container	is	running.

•	CMD	is	the	default	command	that	gets	executed	when	a	container	is	launched.
By	starting	Tomcat	as	the	default	command	when	a	container	is	launched,	we
get	two	things:	first,	Tomcat	is	started	automatically,	and	second,	the	product
catalog	service	is	deployed	automatically.

Here	is	the	complete	file	for	reference:
Click	here	to	view	code	image

#	Based	on	Ubuntu	17.04
FROM	ubuntu:17.04
#	Environment	variables	to	install	Tomcat	7;	you	may	change	the
#	minor	version	of	Tomcat	according	to	your	needs.	To	change	the
#	major	version	as	well	(e.g.,	to	Tomcat	8),	you	must	be	sure	to
#	change	the	TOMCAT_LOCATION	variable	as	well.

ENV			TOMCAT_VERSION=7.0.81
ENV			TOMCAT_FILENAME=apache-tomcat-$TOMCAT_VERSION.tar.gz
ENV			TOMCAT_DIRECTORY=apache-tomcat-$TOMCAT_VERSION
ENV			TOMCAT_LOCATION=http://www-eu.apache.org/dist/tomcat/		\
tomcat-7/v$TOMCAT_VERSION/bin/$TOMCAT_FILENAME

#	Fetch	Tomcat;	install	required	utilities	such	as	wget	&	JDK1.8.
#	Clean	up	apt	cache,	as	"apt-get	update"	is	going	to	bust	the	cache
#	always.
RUN	apt-get	update	&&	\
				apt-get	install	-y	wget	&&	\
				apt-get	install	-y	default-jdk	&&	\
				rm	-fr	/var/lib/apt/lists/*	&&	\

http://www-eu.apache.org/dist/tomcat/

				wget	$TOMCAT_LOCATION

#	Install	Tomcat	under	/opt	and	rename	the	directory	"tomcat"
RUN	tar	-xf	$TOMCAT_FILENAME	-C	/opt	&&	\
				mv	/opt/$TOMCAT_DIRECTORY	/opt/tomcat

#	Deploy	product	catalog	service	to	Tomcat
ADD	catalog-svc.war	/opt/tomcat/webapps/

#	Expose	port	to	the	host	system
EXPOSE	8080

#	Run	tomcat	in	the	foreground
CMD	["/opt/tomcat/bin/catalina.sh",	"run"]

Now	let’s	use	this	Dockerfile	to	build	a	Docker	image	for	the	product	catalog
service.

Building	the	Docker	Image
Using	 the	 Dockerfile	 we	 just	 created,	 enter	 the	 following	 command	 on	 the
command	line:

>>	docker	build	–t	catalog-svc:1.0	.

Let’s	review	what	the	command	does:

•	docker	build	is	the	command	used	to	create	a	Docker	image.

•	 –t	 is	 the	 option	 to	 specify	 a	 name	 for	 the	 created	 image	 (in	 our	 case,
catalog-svc:1.0),	which	includes	ImageName:<Tag>.

•	The	ending	.	tells	the	Docker	build	command	to	use	the	files	in	the	current
directory.

To	run	this	command,	you	need	to	do	the	following:

1.	Make	sure	that	Docker	is	installed.
2.	Create	a	directory	that	has	the	Dockerfile	we	created	and	the	WAR	file	for
the	catalog	service.

3.	Run	the	Docker	build	command	from	the	directory	created	in	step	2.

Now	 that	we	have	created	 the	Docker	 image	 for	 the	product	catalog	 service,
we	are	 ready	 to	use	 this	 image	 and	 spin	up	 the	 catalog	 service	 (inside	Docker
containers)	 on	 the	 fly.	 Before	 we	 can	 spin	 up	 our	 catalog	 service,	 we	 need
infrastructure	where	these	services	can	run.	We	discussed	Mesos	and	Marathon
in	previous	chapters,	and	we’ll	be	using	it	to	spin	up	our	microservices.
A	fast	way	to	get	started	is	 to	utilize	a	DC/OS	(datacenter	operating	system),

an	open	 source	 distributed	operating	 system	 software	 based	on	Apache	Mesos
that	 provides	 an	 easy	 way	 to	 get	 Mesos,	 Marathon,	 and	 Marathon-lb	 set	 up
quickly.	We’ll	 set	up	 the	 framework	within	Amazon	Web	Services	 (AWS);	 the
rest	 of	 this	 chapter	 is	 based	 on	 that.	 For	 more	 information	 on	 DC/OS,	 visit
https://dcos.io.

DC/OS	Cluster	Setup	on	AWS
To	spin	up	our	microservices,	we	 leverage	 the	DC/OS	cluster,	so	 let’s	set	 it	up
first.	There	are	a	few	different	ways	to	set	up	a	DC/OS	cluster;	the	easiest	option
by	far	is	to	spin	up	a	cluster	in	AWS.	(You	will	need	an	AWS	account	to	spin	up
this	 cluster.	 For	 detailed	 documentation,	 refer	 to	 the	 following	 webpage:
https://docs.mesosphere.com/1.7/administration/installing/ent/cloud/aws/.)
When	accessing	the	EC2	instances	in	Amazon,	be	aware	that	Amazon	enforces

best	practices	such	as	Secure	Shell	(SSH)	keys	instead	of	using	usernames	and
passwords.	 It	 uses	 public	 key	 cryptography	 to	 encrypt	 and	 decrypt	 user
credentials	such	as	login	information.
Let’s	create	a	key	pair,	which	we	will	use	during	our	DC/OS	cluster	creation:

1.	From	 the	AWS	console,	 under	Network	&	Security,	 click	Key	Pairs.	 See
Figure	13.1.

https://dcos.io
https://docs.mesosphere.com/1.7/administration/installing/ent/cloud/aws/

Figure	13.1	Representation	of	AWS	console

2.	Provide	a	name	for	the	key	pair	to	create	one.
3.	Save	the	newly	created	key	pair	in	a	secure	place.	We’ll	need	it	during	our
cluster	creation	shortly.

Now	let’s	create	the	DC/OS	cluster	using	the	following	steps:

1.	 Launch	 the	 DC/OS	 template	 at
https://dcos.io/docs/1.7/administration/installing/cloud/aws.	 Click	 Launch
the	DC/OS	template,	which	is	step	1	under	the	Install	DC/OS	section	of	the
page.

2.	Choose	a	cluster	type	(single	or	multimaster).	For	testing	purposes,	a	single
master	 is	 sufficient.	 For	 production	 systems,	 multimaster	 setup	 is	 highly
preferred	to	avoid	single	points	of	failure.

3.	 In	 the	next	 screen,	 as	 shown	 in	Figure	13.2,	 accept	 the	 defaults	 and	 click
Next.

https://dcos.io/docs/1.7/administration/installing/cloud/aws

Figure	13.2	Representation	of	selecting	default	template

4.	In	the	Create	Stack	page,	select	Specify	Details	on	the	left,	shown	in	Figure
13.3.	Provide	a	name	for	the	cluster,	and	from	the	dropdown,	select	the	key
pair	that	was	created	earlier.

Figure	13.3	Representation	of	specifying	stack	details

5.	Next,	choose	the	number	of	public	and	private	agent	nodes,	or	in	this	case,
leave	the	default	count.

6.	Accept	defaults	in	the	rest	of	the	screens	and	finish	the	stack	creation.

It	should	take	10	to	15	minutes	to	create	the	DC/OS	cluster	successfully.	You
may	watch	the	stack	creation	status	at	CloudFormation	→	Stacks,	as	shown
in	Figure	13.4:

Figure	13.4	Representation	of	stack	live	status

7.	Once	 the	stack	creation	 is	complete,	go	 to	 the	Outputs	 tab	and	copy/paste
the	mesos-master	 URL	 to	 your	 browser.	 You	 should	 see	 the	 DC/OS	 user
interface	 (UI)	 launched	 successfully	 from	 the	 system	 dashboard	 shown	 in
Figure	13.5:

Figure	13.5	System	dashboards

8.	 From	 the	 cluster	UI,	 go	 to	Universe	 on	 the	 left	 and	 search	 for	Marathon.
You	should	see	a	screen	similar	to	Figure	13.6.	Click	the	Install	buttons	for
Marathon	and	Marathon-lb.

Figure	13.6	Installing	Marathon	and	Marathon-lb

With	 this,	 we	 have	 successfully	 installed	 DC/OS	 cluster.	 Let’s	 look	 at	 the
overall	picture	 of	 our	 application	 using	 a	 logical	 diagram,	 as	 shown	 in	 Figure
13.7:

Figure	13.7	Application	logical	diagram

Notice	 that	 the	 services	 we	 split	 and	 packaged	 as	 microservices	 (catalog,
ticketing,	 search)	 are	 the	 ones	 that	 will	 be	 deployed	 and	 managed	 within	 the
DC/OS	 cluster,	 while	 the	 rest	 of	 the	 application	 will	 work	 as	 is.	 These
microservices	will	continue	to	use	the	same	database.
Figure	 13.8	 shows	 how	 our	 deployment	 will	 look	 logically	 on	 the	 DC/OS

cluster.

Figure	13.8	Logical	Application	view

Let’s	 review	 at	 a	 high	 level	 what	 we	 learned	 in	 Chapter	 9,	 “Container
Orchestration,”	 about	 Mesos	 and	 Marathon,	 so	 we	 can	 better	 understand	 our

deployment:

•	Mesos.	This	is	an	open	source	Apache	project	that	manages	resources	such
as	CPU	and	memory	on	a	cluster	of	machines.	Tasks	or	services	like	product
catalog	and	ticketing	will	be	running	in	the	Mesos	cluster.

•	Marathon.	This	 is	another	open	source	framework	that	works	closely	with
Mesos	 master	 to	 schedule	 tasks	 in	 the	 cluster.	 In	 our	 case,	 if	 we	 have	 to
schedule	our	catalog	service	to	run	inside	the	Mesos	cluster,	then	we	have	to
go	to	the	Marathon	UI,	provide	the	details	about	the	product	catalog	service
(e.g.,	Docker	image	for	the	service,	listening	port),	and	click	Submit.

•	Marathon-lb.	 This	 load	 balancer	 is	 based	 of	 the	 popular	 load	 balancer
HAProxy,	 and	 it	 works	 by	 automatically	 generating	 a	 configuration	 for
HAProxy	on	the	fly.	Here	is	how	it	works:

•	It	communicates	to	Marathon	via	APIs	to	get	a	list	of	tasks	and	services	that
Marathon	scheduled	in	the	Mesos	cluster.
•	 From	Marathon’s	 response,	 it	 finds	 out	 what	 services	 are	 running	 in	 the
cluster,	where	 they	 are	 running	 (i.e.	which	machine	 in	 the	 cluster),	which
port	the	service	is	running	on,	and	so	on.
•	It	generates	an	HAProxy	configuration,	which	is	simply	a	request	mapping.
The	configuration	has	details;	for	example,	“if	a	request	comes	to	a	service
endpoint,	/abc,”	then	this	request	may	be	handled	by	servers	a,	b	or	c,	where
a,	b	and	c	are	the	machines	the	service	is	running	to	handle	the	request	/abc.
•	 External	 applications	 will	 always	 reach	 out	 to	 Marathon-lb	 to	 get	 the
services	running	in	the	Mesos	cluster.

Now	 that	 our	 cluster	 is	 ready,	 let’s	deploy	our	microservices.	We	deploy	 the
product	catalog	service	here	and	leave	the	other	two	services	for	you	to	deploy
on	your	own	in	a	similar	fashion.

Deploying	the	Catalog	Microservice
We	start	by	deploying	a	single	instance	of	the	product	catalog	microservice,	and
then	we	scale	it	up	or	down	according	to	our	needs.
To	deploy	the	service	into	the	cluster,	we	create	a	task	that	has	all	 the	details

about	 the	 service	 and	 our	 needs.	 This	 task	 is	 then	 submitted	 to	 the	 cluster
through	Marathon.

Submitting	a	Task	to	Marathon
Let’s	 describe	 the	 task	 for	 our	 product	 catalog	 service.	There	 are	 two	ways	 to
submit	a	task	to	Marathon:

•	Using	a	simple	command,	you	can	submit	a	Docker	command	directly—for
example,	Docker	run	–P	-d	nginx.	Simple,	 small	 tasks	 that	do	not
require	major	configurations	can	be	submitted	directly.

•	When	we	want	to	describe	the	service	with	more	details,	we	can	use	a	JSON
file.	The	 JSON	 file	 is	 a	well-known,	 standard	 file	 format	 that	 uses	 human-
readable	text	to	describe	data.	It	uses	key-value	pairs	to	describe	the	data,	as
we’ll	see	shortly.

We	use	a	JSON	file	 to	describe	our	catalog	service	 in	detail	and	 then	submit
the	 task	 through	Marathon.	Here	 is	 our	 catalog	microservice	 configuration	 file
(JSON):
Click	here	to	view	code	image

{
	"id":	"catalog-external",
	"container":	{
		"type":	"DOCKER",
		"docker":	{
			"image":	"kocher/catalog-svc:1.1",
			"network":	"BRIDGE",
			"portMappings":	[
				{	"hostPort":	0,	"containerPort":	8080,	"servicePort":	10000	}
],
			"forcePullImage":false
		}
	},
	"instances":	1,
	"mem":	1024,
	"healthChecks":	[{
			"protocol":	"HTTP",
			"path":	"/",
			"portIndex":	0,
			"timeoutSeconds":	20,
			"gracePeriodSeconds":	10,
			"intervalSeconds":	10,
			"maxConsecutiveFailures":	10

	}],
	"labels":{
					"HAPROXY_GROUP":"external",
"HAPROXY_0_VHOST":"ec2-52-207-255-252.compute-1.amazonaws.com"
	}
}

Let’s	review	the	submitted	task	in	detail:

•	id	 is	 an	 identifier	 for	 our	 catalog	 service.	 It	 is	 used	 to	 identify	 services
running	in	the	cluster.

•	 The	container	 section	 describes	 the	 Docker	 container	 for	 the	 product
catalog	service.	It	has	the	following	components:

•	type	 indicates	 the	 type	 of	 container.	 It	 is	DOCKER	 by	 default.	 Another
option	is	MESOS,	which,	in	future	Marathon	frameworks,	may	support	other
container	types.
•	image	indicates	which	Docker	image	should	be	spun	up	when	this	task	is
launched	in	the	cluster.
•	network	indicates	the	type	of	network.	We	are	using	BRIDGE.	There	are
other	types	of	networks,	as	we	saw	in	Chapter	8,	“Containers	Networking.”
•	 portMappings:	 hostPort	 indicates	 what	 port	 should	 be	 exposed
within	 the	 host	 on	which	 the	 container	 is	 running.	containerPort,	 as
the	name	suggests,	is	the	port	exposed	within	the	container.	servicePort
is	 the	port	on	which	 this	catalog	service	 is	accessible	via	 the	Marathon-lb
load	balancer.
•	 forcePullImage,	 if	 set	 to	 TRUE,	 forces	 Marathon	 to	 pull	 the	 latest
image	 from	 the	 Docker	 registry	 before	 it	 launches	 the	 task.	 The	 default
value	is	false.

•	instances	 indicates	how	many	 instances	of	 the	 catalog	 service	must	be
launched	in	the	cluster.

•	mem	indicates	how	much	memory	should	be	allotted	to	the	catalog	service.

•	The	parameters	in	the	healthChecks	block	section	instructs	Marathon	to
perform	a	health	check	on	the	catalog	service	at	the	configured	intervals.

•	The	labels	section	has	the	following	labels:

•	HAPROXY_GROUP:	The	external	 label	 indicates	 to	 the	Marathon	 load
balancer	that	this	microservice	must	be	accessible	to	the	external	world.	If	it
is	made	 internal,	 then	 the	 same	microservice	will	be	 accessible	only	from
within	the	DC/OS	cluster	and	not	accessible	from	the	outside	world.
•	 HAPROXY_0_VHOST	 instructs	 the	 Marathon	 load	 balancer	 to	 create	 a
virtual	host	for	the	service.	Services	with	this	label	set	will	be	accessible	via
the	servicePort	and	additionally	at	ports	80	and	443.

Now	let’s	go	to	the	Marathon	UI	and	submit	this	JSON	file	to	launch	our	first
microservice	in	the	DC/OS	cluster.	From	the	DC/OS	UI,	go	to	Services	and	click
the	Marathon	link.	Then	launch	the	Marathon	UI	by	clicking	Open	Service,	as
shown	in	Figure	13.9:

Figure	13.9	Stack	live	status

You	should	see	our	running	applications,	as	shown	in	Figure	13.10.	From	this
screen,	launch	Create	Application.	Choose	Ports	and	Service	Discovery,	and
then	click	JSON	Mode	to	provide	our	catalog.JSON.

Figure	13.10	Create	application

You	should	see	a	new	Application	window	similar	to	Figure	13.11:

Figure	13.11	New	application

Hit	Create	 Application,	 and	 after	 a	 few	 seconds,	 you	 should	 see	 that	 our
catalog	service	is	up	and	running,	as	shown	in	Figure	13.12:

Figure	13.12	Running	applications

Inspecting	and	Scaling	the	Service
If	you	click	the	catalog-external	 link	from	the	applications,	you	will	be	able	 to
inspect	further	details	about	this	service.	Figure	13.13	shows	that	one	instance	of
this	 microservice	 is	 healthy.	 It	 also	 provides	 status,	 log	 information,	 version
number,	and	when	it	was	last	updated.

Figure	13.13	Catalog	external

Running	a	quick	curl	on	the	instance	will	return	a	list	of	products	indicating

that	the	service	is	up	and	running	normally,	as	shown	in	the	following:
Click	here	to	view	code	image

curl	http://10.0.0.79:15973/catalog-svc/rest/CatalogService/getCatalog/pkocher

{
		"productFamilyListList":	[
				{
						"productFamily":	"Phone",
						"productId":	"iPhone5",
						"technologySolution":	"N"
				},
				{
						"productFamily":	"Phone",
						"productId":	"iPhone6",
						"technologySolution":	"N"
				}
],
		"responseErrorCode":	null,
		"responseErrorMessage":	null,
		"responseStatus":	"SUCCESS"
}

To	scale	up	this	microservice,	all	we	have	to	do	is	click	Scale	Application	and
provide	the	number	of	instances.	Let’s	say	we	want	to	run	two	instances	of	this
service.	We	would	click	on	Scale	Application	 and	enter	2.	 It	 should	 scale	 the
application	in	a	matter	of	seconds,	as	shown	in	Figure	13.14.	Under	the	Running
Instance	column,	you	 should	 see	 “2	of	2,”	 indicating	 that	 two	 instances	of	 the
catalog	service	are	now	deployed	in	the	cluster.

Figure	13.14	Scaling	up	the	microservice

http://10.0.0.79:15973/catalog-svc/rest/CatalogService/getCatalog/pkocher

This	is	how	easy	it	is	to	scale	up	or	scale	down	a	microservice	within	a	DC/OS
cluster.	Now	that	two	instances	of	our	catalog	microservice	are	deployed	in	the
cluster,	we	will	access	this	service	from	rest	of	the	application.

Accessing	the	Service
How	do	we	know	where	 the	 service	 is	 running?	 If	 you	 recall	 from	Chapter	 3,
“Interprocess	 Communication,”	 this	 is	 one	 of	 the	 most	 challenging	 parts	 in
microservices	deployment	and	architecture,	as	microservices	may	come	up	or	go
down	 for	 various	 reasons,	 such	 as	 node	 failure	 or	 insufficient	 resources.	 If	 a
microservice	 goes	 down	 for	 any	 reason,	 then	Marathon	will	 detect	 the	 failure
and	will	work	with	the	Mesos	cluster	to	spin	up	another	instance.	It	ensures	that
the	correct	number	of	instances	are	always	running	in	the	cluster.
Marathon-lb,	 on	 the	 other	 hand,	 works	 with	 Marathon,	 through	 Marathon

APIs,	to	discover	what	services	are	running	in	the	cluster,	on	what	machines	in
the	cluster	the	service	is	running,	on	what	ports,	and	so	on.	Once	it	discovers	the
services	running	in	the	cluster,	 if	servicePort	 is	defined,	 then	Marathon-lb
exposes	that	port	on	itself	through	which	the	actual	service	can	be	reached.
Given	 this	context,	 in	our	case,	we	have	 two	 instances	of	 the	catalog	service

deployed	 in	 the	 cluster,	 and	 they	 have	 a	servicePort	 value	 10000,	 which
means	the	catalog	service	can	be	reached	at	http://<DNS	name	of	the	Marathon-
lb	server>:10000.
To	find	out	the	Marathon-lb’s	host	name,	you	go	to	the	DC/OS	cluster	running

in	AWS,	select	the	stack,	and	choose	Outputs	tab,	as	shown	in	Figure	13.15.

Figure	13.15	Representation	of	finding	host	name

The	 host	 name	 you	 see	 in	 the	 second	 row	 (PublicSlaveDnsAddress)	 is	 the
server	where	Marathon-lb	 is	 running.	 So,	 to	 access	 the	 catalog	 service,	 access
this	endpoint:
Click	here	to	view	code	image

curl	http://dcos-demo-PublicSl-1O6EEUP951OVX-628629381.us-
east-1.elb.amazonaws.com:10000/catalog-svc/rest/CatalogService/
getCatalog/<userid>

Notice	 in	 this	 URL,	 port	 10000	 exposes	 the	 catalog	 service	 in	 the	 DC/OS
cluster.	No	matter	how	many	instances	of	catalog	service	are	up	and	running	in
the	 cluster,	 the	 Marathon	 load	 balancer	 will	 discover	 them	 automatically	 and
expose	them	via	port	10000.
Now	that	the	catalog	microservice	is	up	and	running	in	the	DC/OS	cluster,	we

have	to	configure	the	helpdesk	application	to	start	using	this	microservice.	It’s	a
simple	configuration	change	in	a	property	file.

Updating	the	Monolithic	Application
Our	 helpdesk	 application	 maintains	 a	 list	 of	 URLs	 for	 each	 service	 in	 a	 file
called	 Application.properties.	 This	 file	 is	 located	 under	 /usr/share/tomcat7/lib
directory.
You	will	have	to	change	the	property	called	endPoints.getCatalog	with

the	Marathon-lb	URL	as	follows:
Click	here	to	view	code	image

endPoints.getCatalog=http://ec2-52-207-255-252.compute-1.
amazonaws.com:10000/catalog-svc/rest/CatalogService/getCatalog

With	 this	 change,	 the	 helpdesk	 application	 will	 now	 start	 consuming	 the
microservice.	As	we	saw	earlier	in	this	chapter,	no	matter	how	many	instances	of
the	 catalog	 service	 is	 spun	 up,	 the	 endpoint	 to	 access	 the	 service	 remains	 the
same.	 Marathon-lb	 will	 automatically	 discover	 where	 those	 instances	 of	 the
catalog	service	are	deployed	and	will	automatically	route	(and	load	balance)	the
traffic	to	those	instances.
In	this	chapter,	we	looked	at	the	catalog	service	in	detail,	from	breaking	up	and

building	 the	 catalog	 service	 as	 a	 microservice	 to	 deploying	 it	 in	 DC/OS	 and
configuring	 the	monolith	 to	 start	 using	 the	microservice.	 The	 steps	 to	 convert

http://dcos-demo-PublicSl-1O6EEUP951OVX-628629381.us
http://amazonaws.com
http://ec2-52-207-255-252.compute-1
http://amazonaws.com

ticketing	 and	 search	microservices	 are	 exactly	 the	 same,	 and	 that	 is	 left	 as	 an
exercise	for	you.	All	the	code	and	instructions	are	posted	at	GitHub.
As	 you	 can	 see,	 we	 have	 not	 only	 addressed	 all	 the	 needs	 highlighted	 in

Chapter	12	but	also	scaled	our	application	and	made	it	easier	to	scale	further	in
the	future.	That’s	the	power	of	combining	microservices	and	containers.

Conclusion

In	 the	 preface,	 I	 said	 that	 I	 wrote	 this	 with	 two	 groups	 of	 readers	 in	 mind:
experienced	software	and	systems	engineers	looking	to	roll	up	their	sleeves	and
get	 their	hands	dirty	with	 some	 real-life	 examples	 and	 a	 deep-dive	 case	 study,
and	 executives	 and	 project	managers—that	 is,	 non-programmers—who	want	 a
high-level	introduction	to	the	topic.	Whichever	group	you	fall	into—perhaps	you
even	have	a	foot	in	both—I	hope	you	found	the	pages	you	read	enlightening.
Each	 subject	 we	 covered	 about	 microservices	 and	 containers—discovery

services,	 API	 Gateway,	 Kubernetes,	 services	 communication,	 and	 more—is
worthy	of	an	entire	tome	on	its	own.	(Indeed,	some	of	those	topics	already	have
multiple	 books	 devoted	 to	 them!)	 What	 I	 wanted	 to	 do	 with	 this	 book	 was
provide	a	higher-level	synthesis	of	those	topics,	providing	you	with	just	enough
to	 make	 the	 takeaways	 you	 need	 for	 your	 own	 job	 or	 career.	 Alone,
microservices	 enable	 the	 on-demand	 scaling	 of	 various	 software	 components.
Containers,	meanwhile,	help	with	virtualization,	keeping	everything	lightweight
along	 the	way.	 Together,	 they	 complement	 each	 other	 beautifully,	making	 one
plus	one	equal	three—the	ultimate	definition	of	synergy.

What	Is	DevOps?
In	 the	 opening	 chapters	 of	 this	 book,	 we	 examined	 some	 of	 the	 impacts
microservices	 and	 containers	 can	 have	 on	 organizations,	 but	 we	 did	 not	 talk
much	about	their	potential	impact	on	another	hot	topic	of	the	moment:	DevOps.
Today,	many	software	organizations	are	moving	toward	the	DevOps	model,	and
microservices	and	containers	will	be	key	enablers	in	this	journey.
DevOps	 is	 a	 portmanteau—a	 hybrid	 term—that	 combines	 two	 software

engineering	practices:	software	development	and	(IT)	operations.	The	emphasis
is	on	increasing	collaboration	between	these	two	practices	in	order	to	accomplish
the	following:

•	Increase	software	release	velocity.

•	Improve	the	product	quality	at	a	faster	pace.

•	Automate	various	aspects	of	these	two	fields,	such	as	code-building,	testing,

packaging,	releasing,	and	deploying.

Not	surprisingly,	the	entire	tech	industry	is	scrambling	to	jump	on	the	DevOps
bandwagon	 in	 order	 to	 reap	 the	 benefits	 of	 all	 that	 potential.	 So,	 what’s	 the
holdup?	What	 challenges	 are	 Silicon	 Valley’s	 best	 and	 brightest	 facing	 that’s
preventing	them	from	developing	the	proverbial	golden	egg–laying	goose?	The
biggest	 one	 is	 change.	Many	 tools	 and	 practices	 are	 already	 in	 place	 in	 these
organizations	to	manage	software	development,	testing,	or	release,	and	all	these
must	change.	Not	only	that,	organizational	change	may	also	impact	existing	team
structures,	 which	 in	 turn	 can	 require	 the	 recruitment	 of	 new	 skill	 sets.	 These
challenges	should	sound	similar	to	those	surrounding	microservices.
Next,	if	you	look	at	the	goals	behind	DevOps,	you	can	see	microservices	can

clearly	 enable	 this	 combination	 of	 software	 engineering	 practices.	 The
complexity	of	a	monolithic	architecture	is	broken	down	into	manageable	pieces
that	 provide	 just	 one	 capability	 each.	 Those	 pieces	 can	 be	 divided	 among
multiple	 teams	 such	 that	 each	 team	 can	 focus	 on	 its	 own	 piece.	 The	 result	 is
shorter	development	cycles	and	simpler,	quicker	deployments,	reducing	 time	 to
market.	 These	 advantages,	 in	 turn,	 create	 the	 need	 for	 operations	 agility	 and
automation.	Microservices	 need	 that	 kind	 of	 agile	 culture	 to	 be	 sustained,	 and
therefore	push	or	enable	the	DevOps	environment.
Given	 these	 advantages	 with	 DevOps,	 it	 might	 seem	 as	 though	 every

developer,	architect,	or	organization	would	want	to	transition	to	a	microservices
paradigm.	Yet	as	we	discussed	earlier,	 it	 is	not	for	everyone.	Microservices	are
the	 best	 fit	 for	 complex	 architectures—that	 is,	 software	 with	 many
functionalities	and	end	users,	rapid	deployment,	and	scalability.	In	the	very	near
future,	most	 companies,	 including	many	 small	 and	medium-size	organizations,
will	embrace	this	trend.	Why?	Five	major	reasons:

•	An	even	more	complex	future	of	the	software	industry.	Software-defined
networking,	 software-defined	 storage,	 software	 as	 a	 service,	 the	 Internet	 of
things,	and	platforms	that	handle	complex	communication	between	millions
of	 users	 and	 devices	 are	 some	 examples	 that	 come	 to	mind	when	 you	 talk
about	where	the	software	industry	is	going.	There	is	a	plethora	of	companies,
both	big	and	small,	getting	into	these	fields,	and	as	they	move	forward,	they
will	realize	the	need	for	a	microservices-based	architecture	coupled	with	an
agile	culture.

•	New	client	types	generating	new	needs.	The	most	innovative	companies	are
developing	 solutions	 that	 are	 supported	 on	 all	 kind	 of	 new	 devices	 and

around	 the	 globe.	Each	 family	 of	 devices	 has	 different	 sets	 of	 resources	 to
work	 with.	 Memory,	 processing	 speed,	 and	 storage	 are	 limited	 in	 some
devices	 and	 found	 in	 abundance	 in	 others.	 When	 all	 these	 devices	 with
different	 constraints	 try	 to	 access	 the	 same	 software,	 the	 software	 must
support	 their	 requests	 by	 hiding	 the	 complexity	 from	 the	 clients.	Where	 is
this	complexity	going	to	be	hidden?	In	the	software	itself!	Which	means	the
software	will	become	even	more	complex—hence	the	need	for	microservices
architecture	 that	 can	 support	 communication	 with	 different	 clients,	 as	 we
discussed	in	earlier	chapters.

•	User-driven	complexity.	Amazon	and	Netflix	offerings	have	gotten	complex
thanks	to	their	innovation	in	simplifying	and	enhancing	the	user	experience.
They	 would	 have	 probably	 survived	 with	 monolithic	 paradigms	 if	 their
numbers	of	users	remained	manageable.	In	fact,	they	continued	on	that	path
in	their	initial	years.	As	the	emerging	markets	catch	up	to	developed	ones	and
their	millions	 (or	billions!)	get	online,	 software	will	continue	 to	grow	more
complex	to	address	the	scalability,	performance,	and	needs	of	different	users.
This	will	cause	more	and	more	companies	to	feel	the	need	for	microservices,
which	can	address	those	issues.

•	Job	satisfaction.	Monolithic	means	one	platform	worked	on	by	one	or	more
development	 teams,	 sometimes	 divided	 by	 work	 type	 (e.g.,	 frontend,
backend,	 user	 experience).	 One	 of	 the	 issues	 with	 this	 model	 is	 that	 one
backend	 engineering	 team	may	 be	 responsible	 for	 building	 all	 the	backend
code	for	required	services	such	as	billing,	product	catalog,	shopping	cart,	and
so	on	(in	the	example	of	an	e-commerce	site).	When	the	code	and	use	cases
get	 complex,	 the	 team	 splits	 further	 and	 divides	 the	 work	 within	 backend
systems	 (common	 capabilities	 and	 the	 like).	 As	 the	 complexity	 increases,
they	 add	more	 people	 and	 create	 new	 teams	 and	 complexity	 grows	 to	 the
point	 that	 any	 small	 feature	 update	 requires	 long	 cycles	 and	 deployment
times.	Over	time,	teams	become	frustrated.	Failed	builds,	rollbacks,	and	time-
consuming	 debugging	 can	 become	 the	 norm	 rather	 than	 occasional
roadblocks.	 Miscommunication	 and	 lack	 of	 collaboration	 occur,	 and	 in
particularly	fraught	situations,	can	end	 in	 finger-pointing,	name-calling,	and
even	 talent	 attrition.	 If	 implemented	 well,	 DevOps	 and	 microservices	 can
promote	clearer	separation	of	 roles	and	 responsibilities,	which	will	 enhance
collaboration	between	 teams.	Collaboration,	 in	 turn,	 drives	 up	 productivity,
which	 directly	 impacts	 the	 bottom	 line.	 The	 result?	 Job	 satisfaction	 all	 the
way	around.

•	Business	benefits.	A	smart	business	will	always	adapt	 to	new	technologies
or	paradigms	if	they	can	improve	the	bottom	line	and	solve	major	challenges.
Microservices	 offers	 one	 such	 opportunity	 to	 the	 business	 to	 differentiate
itself	from	its	competitors.

Time	will	 tell,	 but	 given	 these	 reasons,	 the	 penetration	 rate	 of	microservices
and	containers	will	likely	skyrocket	over	the	next	few	years.

Only	the	Beginning
Although	you	have	 reached	 the	 end	of	 this	book,	my	hope	 is	 that	 these	words
serve	as	 a	 commencement	more	 than	 a	 conclusion.	 In	 other	words,	while	 you
may	have	“graduated”	 from	 the	School	 of	Microservices	 and	Docker,	 I	 assure
you	there	is	still	so	much	more	out	there	to	learn.	Whether	you	consider	this	your
main	course	or	merely	your	appetizer,	I	hope	that	I	have	whet	your	appetite	for
more!	 I	 encourage	 you	 to	 read	 more	 and	 get	 involved	 with	 various	 online
microservices	 and	 containers	 communities	 and	 dive	 into	 more	 case	 studies
yourself.	 In	conclusion,	 I	hope	 this	 is	both	an	ending	and	a	beginning	for	you.
Time	to	get	to	work!

Appendix	A

Helpdesk	Application	Flow

This	appendix	provides	a	functional	overview	of	the	helpdesk	application.	Think
of	it	as	the	user	guide	that	presents	the	application	capabilities	for	admin	and	the
customer.
In	 the	 real	 world,	 most	 support	 applications	 are	 integrated	 with	 order

management	and	 customer	management	 systems.	As	 a	 result,	 there	 is	 a	 lot	 of
automation	in	place	from	the	data	movement	perspective.	For	example,	when	a
customer	is	created	in	a	customer	management	system,	the	customer	information
is	 automatically	 pushed	 down	 to	 other	 systems,	 such	 as	 a	 support	 application.
For	our	purposes,	we	are	 considering	 the	 standalone	helpdesk	 application,	 and
we	have	no	integrations	with	upstream	applications,	so	we	will	manually	create
all	the	required	data	to	explain	this	application.
There	are	three	main	types	of	users	or	roles	in	this	application:

•	Administrator.	 The	 so-called	 superuser,	 who	 can	 create	 and	 modify	 new
accounts,	users,	services,	and	so	on.	He	or	she	can	see	all	 the	data	and	can
access	the	backend	systems	such	as	databases.

•	Customers.	Users	who	 purchased	 the	 product	 or	 service	 from	 the	 vendor.
Customers	 can	 create,	 modify,	 and	 check	 the	 status	 of	 tickets.	 They	 have
visibility	to	the	tickets	that	they	submit.

•	 Support	 desk	 engineer.	 A	 user	 who	 works	 on	 tickets	 submitted	 by
customers	and	has	visibility	to	all	the	tickets.

Administrator	Flows
This	section	 lists	all	 the	 functions	available	 to	application	administrators	 to	set
up	and	maintain	the	application.

Login
Every	application	needs	to	authenticate	so	that	only	legitimate	users	can	use	it.
The	 application	 takes	 the	 username	 and	 password	 for	 authenticating	 users,	 as

shown	 in	 Figure	 A.1.	 The	 username	 and	 password	 should	 be	 available	 in	 the
database.	 The	 application	 is	 already	 set	 up	 with	 the	 username	 admin	 and
password	admin.	You	can	reset	them	in	the	database	directly.

Figure	A.1	Application	login	screen

On	successful	authentication,	the	admin	arrives	on	the	landing	page;	this	page
will	have	all	the	modules	on	the	top	menu,	as	shown	in	Figure	A.2.	Let’s	review
each	of	them.

Figure	A.2	Application	capabilities	for	admin

Administration	and	Supported	Products
The	 administrator	 can	 add	 new	 users	 (customers	 and	 support	 desk),	 newly
supported	products,	and	sold	products	within	the	product	catalog	for	the	user,	as
shown	in	Figure	A.3.

New	 products	 are	 released	 at	 regular	 intervals	 and	 old	 ones	 taken	 out	 of
support	 or	 service.	 This	 is	 where	 the	 admin	 comes	 to	 add	 new	 supported
products	or	expire	existing	products	that	are	going	out	of	support.	For	example,
Figure	A.3	shows	a	list	of	supported	products,	where	Y	is	yes	(supported)	and	N
is	no	(not	supported).

Figure	A.3	List	of	supported	products	within	the	Administration	control	panel

Add	Supported	Product
From	here,	the	admin	can	add	new	supported	products	to	the	catalog,	as	shown
in	Figure	A.4.

Figure	A.4	Adding	supported	products	to	the	catalog

Add	New	User
As	discussed	earlier,	usually	these	kinds	of	activities	will	be	automated	and	the
data	will	be	entered	in	the	upstream	system.	For	the	sake	of	understanding	this
application,	 let’s	create	 the	data	manually.	As	admin,	 let’s	add	a	new	customer
user	to	the	helpdesk	application,	which	will	enable	this	particular	user	to	submit
tickets.	For	example,	we’ll	 create	a	customer	user	named	Bob	Black	with	user
ID	Bblack,	as	shown	in	Figure	A.5.

Figure	A.5	Our	sample	user’s	account	information

The	 user	 account	 for	 Bob	 has	 been	 created,	 but	 to	 enable	 him	 to	 submit	 a
ticket,	we	need	to	associate	him	with	the	product	he	purchased.	Let’s	create	this
entry	within	Add	Sold	Product.

Add	Sold	Product
The	 admin	 can	 manually	 add	 the	 products	 a	 customer	 bought.	 Let’s	 say	 he
purchased	an	iPhone	7s,	as	shown	in	Figure	A.6.
Now	that	we	know	about	the	admin	activities,	let’s	get	to	the	customer’s	role.

Figure	A.6	Our	sample	user’s	iPhone	purchase

Customer	Flows
After	the	customer	successfully	logs	in	by	using	the	credentials	supplied	by	the
admin,	he	can	see	the	options	on	the	landing	page,	as	shown	in	Figure	A.7:

Figure	A.7	Application	capabilities	for	customer	user

Let’s	review	these	capabilities	one	at	a	time.

My	Products
This	console	is	called	“Product	Catalog	Service”	in	our	helpdesk	application.	It
is	used	 to	view	the	products	available	under	 the	account	of	a	 logged-in	user.	 It
shows	the	list	of	supported	products	he	bought.	In	this	example,	Bob	Black	has
active	 support	 on	 iPhone	 6	 and	 iPhone	 7	 (the	 entry	 we	 just	 created	 in	 the
Administrator	section),	as	shown	in	Figure	A.8.

Figure	A.8	The	My	Products	console,	also	known	as	the	product	catalog

Create	an	Incident
Say	 this	 customer	 wants	 to	 create	 an	 incident	 for	 a	 mobile	 device	 he	 bought
recently:	an	iPhone	5.	Using	his	identity,	the	application	looks	up	the	products	he
bought	and	allows	him	to	create	an	incident	based	on	his	selection.	The	customer
uses	the	UI	screen	shown	in	Figure	A.9	to	create	the	ticket.	To	describe	the	issue,
he	fills	 in	 the	 required	 fields	 such	as	 title,	problem	severity,	phone	model,	 and
issue	category;	then	he	submits	the	incident.

Figure	A.9	Submitting	an	incident	for	a	product

View	Incident
Through	this	console,	the	user	can	view	all	historical	tickets,	as	shown	in	Figure
A.10.	 As	 the	 support	 engineer	 works	 on	 the	 ticket,	 the	 user	 can	 view	 ticket
details	and	updates	on	the	incident	by	clicking	on	the	ticket	number,	as	shown	in
Figure	A.11.

Figure	A.10	User’s	view	of	his	active	tickets

Figure	A.11	Viewing	a	ticket	update

Message	Board
This	 is	 very	 basic	 message	 board	 utility.	 Users	 can	 use	 message	 board
functionality	to	get	help	from	the	user	community.	They	can	post	questions	and
respond	to	the	questions	posted	on	the	message	board	by	other	users.
The	message	board	console	shown	in	Figure	A.12	will	display	the	entire	list	of

messages	that	are	currently	open.

Figure	A.12	Message	board

Let’s	take	a	look	at	what	we	can	do	in	the	message	board.

New	Message
Clicking	 on	 the	 Add	 button	 opens	 a	 console	 to	 start	 a	 new	 message	 for
discussion,	as	shown	in	Figure	A.13.

Figure	A.13	Adding	a	new	message

Existing	Thread
By	clicking	the	Message	title,	as	shown	in	Figure	A.14,	you	can	join	the	existing
discussion	and	add	comments.

Figure	A.14	Commenting	on	existing	message

Make	Appointment
This	 console	 provides	 the	 appointment	 capability	 to	 the	 users,	 as	 shown	 in
Figure	A.15.	Availability	for	the	date	and	time	is	pulled	from	the	database.	The
user	can	select	 time	zone,	date,	 and	 time	 for	 the	appointment	with	 the	 support
engineer.

Figure	A.15	Scheduling	an	appointment

Search
Users	 can	 search	 across	 the	 application	 for	 issues.	 The	 application	 has	 three
search	options,	as	shown	in	Figure	A.16:

•	Basic	Search.	Performs	a	database	scan	for	the	keywords.

•	Wiki	Search.	Searches	all	Wiki	data	for	the	keyword.

•	Advance	 Search.	 Uses	 Solr	 search,	 which	 is	 a	 text	 search	 and	 is	 more
accurate	than	a	basic	search.

Figure	A.16	Searching	the	application	for	issues

My	Profile
These	two	tabs	show	the	user	profile	for	the	logged-in	user.	The	first	tab	shows
the	personal	information,	as	shown	in	Figure	A.17;	the	second	shows	the	account
information,	as	shown	in	Figure	A.18.

Figure	A.17	User	profile

Figure	A.18	Account	information

Support	Desk	Engineer	Flows
Support	 desk	 engineers	 work	 on	 the	 incoming	 tickets	 and	 help	 resolve
customers’	issues.	There	are	 two	main	options:	viewing	all	 tickets	and	viewing
and	updating	a	specific	ticket.

View	All	Tickets
In	 the	support	desk	engineer	console,	 the	engineers	can	see	all	 the	 tickets,	and
they	can	click	on	the	ticket	number	to	open	the	ticket	and	start	working	at	it,	as
shown	in	Figure	A.19.

Figure	A.19	Support	desk	user	console

View	Tickets
Clicking	 on	 the	 ticket	 number	 in	 the	 support	 console	 opens	 the	 ticket	 in	 the
update	mode.	A	support	desk	engineer	can	add	comments,	change	status,	and	so
on,	as	shown	in	Figure	A.20.

Figure	A.20	Viewing	and	updating	a	ticket

This	wraps	up	our	high-level	discussion	of	the	functionality	of	the	application.
Again,	the	intent	was	not	to	write	an	industry-grade	application	but	to	create	an
application	 comprehensive	 enough	 for	 a	 case	 study	 in	 which	 you	 could	 gain
hands-on	experience	in	transitioning	a	monolithic	application	to	a	microservices-
and	containers-based	application.

Appendix	B

Installing	the	Solr	Search	Engine

This	 appendix	 provides	 step-by-step	 instructions	 for	 installing	 and	 configuring
Solr	to	use	as	our	search	engine	as	part	of	improving	the	search	service	part	of
our	 case	 study	 in	 Chapter	 12,	 “Case	 Study:	Migration	 to	Microservices.”	 The
instructions	 are	 applicable	 to	 CentOS	 operating	 system.	 If	 you	 want	 to	 learn
more	 about	 Solr	 and	 explore	 its	 capabilities,	 visit
http://lucene.apache.org/solr/resources.html.

Prerequisites
•	CentOS	Linux	box	or	virtual	machine	with	at	least	1	GB	of	RAM

•	python-software-properties	package	installed

•	Latest	version	of	Java	installed

Installation	Steps

1.	Download	the	Solr	 tar	file	from	the	mirror.	You	can	pull	 the	latest	version
available,	but	at	time	of	writing,	we	worked	with	version	5.5.
Click	here	to	view	code	image

wget	http://apache.mirror1.spango.com/lucene/solr/5.5.4/solr-5.5.4.tgz

We’ll	use	the	wget	utility	to	download	the	tar	file,	as	shown	in	Figure	B.1.

Figure	B.1	Downloading	solr	tar	file

http://lucene.apache.org/solr/resources.html
http://apache.mirror1.spango.com/lucene/solr/5.5.4/solr-5.5.4.tgz

2.	Unzip	the	downloaded	tar	file:
tar	xzf	solr-5.5.4.tgz

3.	Execute	the	install	script:
Click	here	to	view	code	image

solr-5.5.4/bin/install_solr_service.sh

It	 may	 take	 a	 minute	 or	 so	 to	 install.	 Once	 it	 is	 installed,	 you	 can	 visit
http://your_server_ip:8983/solr.	The	Solr	web	 interface	should	 look	 like	Figure
B.2.

Figure	B.2	Solr	web	interface

There	will	 be	 a	 separate	microservice	 for	 the	Solr-based	 search,	 but	we	will
pull	the	data	from	the	existing	database	to	be	indexed	in	Solr.	There	are	different
utilities	available	to	pull	the	data	from	MySQL/PostgreSQL	into	Solr.	(You	may
also	need	continuous	syncing	of	 the	data	between	 the	application	database	and
Solr;	in	this	case,	you	would	pull	the	data	only	once	to	keep	it	simple.)	We	will
use	a	simple	data	import	handler	and	import	the	required	table	in	Solr.

http://your_server_ip:8983/solr

Configuring	Solr	for	Simple	Data	Import

1.	Add	the	following	configuration	 in	solrconfig.xml.	This	code	specifies	 the
path	to	the	data	import	configuration	file.	This	configuration	file	is	installed
as	part	of	Solr.	Update	the	path	in	this	snippet	to	the	location	of	the	file	on
your	machine:
Click	here	to	view	code	image

<requestHandler	name="/dataimport"
class="org.apache.solr.handler.dataimport.DataImportHandler">
		<lst	name="defaults">
				<str	name="config">/path/to/my/dbconfigfile.xml</str>
		</lst>
</requestHandler>

2.	Add	the	following	in	the	dbconfig	file.	We	are	importing	the	database	table
to	be	indexed	in	Solr.	In	this	snippet,	we	are	specifying	the	data	source	along
with	the	data	selection	query.
Click	here	to	view	code	image

<dataConfig>
		<dataSource	driver="org.hsqldb.jdbcDriver"
														url="jdbc:hsqldb:./example-DIH/hsqldb/ex"
														user="sa"	password="secret"/>
<document>

				<entity	name="products"	query="select	*	from	products	"
												deltaQuery="select	id	from	products
												where	updated_date	>
												'${dataimporter.last_index_time}'">
					/>
<document>
<dataConfig>

3.	 Go	 back	 to	 the	 shell	 prompt	 and	 run	 following	 command	 to	 import	 and
index	the	data:
bin/solr	-e	dih

Once	all	the	data	is	indexed	in	Solr,	it	is	easy	to	create	a	RESTful	web	service
that	can	query	 the	data	 from	Solr	 and	provide	 fast,	 accurate,	 reliable	 searches.
We	are	 ready	 to	go!	Now	you	can	create	 the	microservice	 from	the	case	study
described	in	Chapter	12.

Index

A
account	management,	helpdesk	application	case	study,	175

addAccount	service,	176–177
deleteAccount	service,	178
getAccount	service,	176
updateAccount	service,	177

addAccount	service,	helpdesk	application	case	study,	176–177
addCatalog	service,	helpdesk	application	case	study,	182–183
administration,	helpdesk	application	case	study,	247,	248–261
Alertmanager	and	Prometheus,	165–167
Amazon	Web	Services

DC/OS	cluster	setup,	227–235
service	discovery,	138

Apache	Mesos	+	Marathon,	container	orchestration,	129
agents,	130–131
frameworks,	131–132
Mesos	master,	130

API	(Application	Programming	Interface)
gateways
creating	microservices,	40
discovery	services	and	microservice	communication,	27

online	resources,	149
REST	API,	149
servers,	Kubernetes	and	container	orchestration,	124–125

appointments,	helpdesk	application	case	study,	184–185
getAvailableDates	service,	185–186
getAvailableTimeSlots	service,	185
saveAppointment	service,	186

asynchronous	communication,	microservices,	23–24
authentication,	helpdesk	application	case	study,	173–174,	248–249

authorization,	helpdesk	application	case	study,	175
automation,	microservices,	38,	39
awslog	logging	driver,	145

B
backups/recovery,	VM,	51
backward	compatibility,	microservices,	25
binaries,	containerizing	microservices,	222
bridges

custom	bridge	networks,	117–118
Docker	containers,	networking,	113–116
Linux	networking,	106

bug	fixes,	helpdesk	application	case	study,	200–202,	217–219
building

binaries,	containerizing	microservices,	222
microservices,	18,	19,	212–213
WAR	files,	containerizing	microservices,	222

C
cAdvisor	monitoring,	149–150,	155–156
calculator	applications,	microservices	versus	monolithic	applications,	4–5
case	studies,	helpdesk	application,	171,	173

account	management,	175–178
administration,	247,	248–261
appointments,	184–186
architecture	of,	172–173
authentication,	173–174,	248–249
authorization,	175
bug	fixes,	200–202
building	application,	193–197
configuring,	198–200
customers,	247–248
deploying,	198–200
Eclipse	IDE,	190–193
flow	of,	247–261
Interceptor,	174

message	board,	186–189
migrating	to	microservices,	203–219
overview	of,	171–172
product	catalog,	181–184
requirements,	200–202
searches,	189
support,	251
ticketing,	178–181
troubleshooting,	200–202
user	roles,	248–251

changing	logging	drivers,	146–147
circuit	breakers,	creating	microservices,	40
cluster–wide	monitoring

Heapster,	150–151
Prometheus,	151–152
adding	targets,	156
Alertmanager	and,	165–167
cAdvisor	and,	155–156
Grafana	user	interface	and,	157–160
Node	Exporter	and,	155–156
online	resources,	167
running,	152–155
viewing	stats,	160–165

commands	(Docker)
docker	attach	command,	85–86
docker	commit	command,	94–95
docker	cp	command,	91–92
docker	create	command,	94
docker	diff	command,	95
docker	exec	command,	89
docker	images	command,	76–77
docker	inspect	command,	87–89
docker	logs	command,	80–83
docker	pause	command,	92–93
docker	ps	command,	79–80,	85
docker	pull	command,	75–76

docker	remove	command,	86–87
docker	rename	command,	90–91
docker	restart	command,	85
docker	rmi	command,	77
docker	run	command,	77–79
docker	search	command,	73–75
docker	stats	command,	147–149

communication,	microservices,	15
asynchronous	communication,	23–24
discovery	services,	26–27,	28–29
API	gateways,	27
service	registries,	27–28

maintaining,	25–26
message	buses,	37
migrating	to	microservices,	37
publish/subscribe	method,	24
synchronous	communication,	23
web	services
maintaining,	25–26
writing,	24–25

compatibility	(backward),	microservices,	25
complexity	of	microservices,	11
Compose	(Docker),	55,	101–103
configuring

Eclipse	IDE,	helpdesk	application	case	study,	190–193
Grafana	user	interface,	159–160
helpdesk	application	case	study,	198–200,	213–217
microservices,	17,	213–217

containers
architecture	of,	52–53
defined,	52–53
Docker	containers,	56
architecture	of,	54–57
attaching	to	running	containers,	85–86
bridges,	113–116
cAdvisor	monitoring,	149–150

copying	files	from	containers	and	local	machines,	91–92
creating,	94
creating	images	from	container	changes,	94–95
custom	bridge	networks,	117–118
default	connection	options,	110
deploying,	57–60
efficiency,	57
example	of,	57–60
Heapster	monitoring,	150–151
host	networking	option,	111–113
linking,	106–109
listing	changed	files/directories	in,	95
listing	running	containers,	79–80
logging,	144–147
LXC	versus	Docker	containers,	53–54
metrics	collection,	147–149
monitoring,	143–144
monitoring,	cAdvisor,	149–150
monitoring,	Heapster,	150–151
none	(no	connection)	option,	110–111
orchestration,	123
orchestration,	Docker	Swarms,	132–136
orchestration,	Kubernetes,	123–129
orchestration,	Mesos	+	Marathon,	129–132
overlay	network	drivers,	119–120
pausing	processes	in,	92–93
port	mapping,	118–119
portability,	54,	56
processes,	running,	53
Prometheus	monitoring,	151–167
removing,	86–87
renaming,	90–91
REST	API,	149
restarting,	85
running	commands	in,	89
storage,	53

viewing	container	information,	87–89
viewing	log	files,	80–83

helpdesk	application	case	study,	containerizing	microservices,	221–246
LXC,	52–53
Docker	containers	versus	LXC,	53–54
portability,	54

microservices,	containerizing,	221
accessing	microservices,	245–246
building	binaries,	222
building	WAR	files,	222
creating	Docker	images,	222–227
DC/OS	cluster	setup,	227–235
deploying	microservices,	235–242
inspecting	microservices,	239–245
listing	dependencies,	222
scaling	microservices,	239–245
submitting	tasks	to	Marathon,	236–242

continuous	delivery,	microservices,	9
controller	 manager	 (replication	 controller),	 Kubernetes	 and	 container
orchestration,	126–127

converting	microservices,	helpdesk	application	case	study,	206–207
copying	files	from	Docker	containers	and	local	machines,	91–92
cost	of	switching	to	microservices,	18–22
createMessage	service,	helpdesk	application	case	study,	188–189
createTicket	service,	helpdesk	application	case	study,	179
cultural	change,	switching	to	microservices,	14–15
custom	networks

custom	bridge	networks,	117–118
overlay	network	drivers,	119–120
underlay	network	drivers	(Macvlan),	121–122

customers,	helpdesk	application	case	study,	247–248

D
daemons/servers,	Docker	servers/daemons,	54
data	migration,	microservices	migration,	44
data	recovery/backups,	VM,	51

data	segregation,	microservices,	10
database-based	searches,	211–212
DC/OS	(Datacenter	Operating	Systems),	cluster	setup,	227–235
decentralization	of	data,	microservices,	10
deleteAccount	service,	helpdesk	application	case	study,	178
deleteCatalog	service,	helpdesk	application	case	study,	184
deploying

Docker	containers,	57–60
helpdesk	application	case	study,	198–200,	213–217
microservices,	39,	43,	205,	213–217,	235
VM,	57–58

DevOps,	20–22
defined,	247–248
microservices	and,	248–250

directories,	listing	changed	files/directories	in	Docker	containers,	95
discovery	process,	microservices,	15
discovery	services,	microservice	communication,	26–27,	28–29

API	gateways,	27
service	registries,	27–28

Docker
clients,	54
containers,	56
architecture	of,	54–57
attaching	to	running	containers,	85–86
bridges,	113–116
cAdvisor	monitoring,	149–150
copying	files	from	containers	and	local	machines,	91–92
creating,	94
creating	images	from	container	changes,	94–95
custom	bridge	networks,	117–118
default	connection	options,	110
deploying,	57–60
efficiency,	57
example	of,	57–60
Heapster	monitoring,	150–151
host	networking	option,	111–113

linking,	106–109
listing	changed	files/directories	in,	95
listing	running	containers,	79–80
logging,	144–147
LXC	versus	Docker	containers,	53–54
metrics	collection,	147–149
monitoring,	143–144
monitoring,	cAdvisor,	149–150
monitoring,	Heapster,	150–151
none	(no	connection)	option,	110–111
orchestration,	123
orchestration,	Docker	Swarms,	132–136
orchestration,	Kubernetes,	123–129
orchestration,	Mesos	+	Marathon,	129–132
overlay	network	drivers,	119–120
pausing	processes	in,	92–93
port	mapping,	118–119
portability,	54,	56
processes,	running,	53
Prometheus	monitoring,	151–167
removing,	86–87
renaming,	90–91
REST	API,	149
restarting,	85
running	commands	in,	89
storage,	53
viewing	container	information,	87–89
viewing	log	files,	80–83

custom	networks
custom	bridge	networks,	117–118
overlay	network	drivers,	119–120
underlay	network	drivers	(Macvlan),	121–122

defined,	49
docker	attach	command,	85–86
docker	commit	command,	94–95
Docker	Compose,	55,	101–103

docker	cp	command,	91–92
docker	create	command,	94
docker	diff	command,	95
docker	exec	command,	89
docker	images	command,	76–77
docker	inspect	command,	87–89
docker	logs	command,	80–83
Docker	Machines,	55
docker	pause	command,	92–93
docker	ps	command,	79–80,	85
docker	pull	command,	75–76
docker	remove	command,	86–87
docker	rename	command,	90–91
docker	restart	command,	85
docker	rmi	command,	77
docker	run	command,	77–79
docker	search	command,	73–75
docker	stats	command,	147–149
Docker	Swarms,	55,	120–121,	132
nodes,	132
services,	133,	135
Swarm	clusters,	133–136
tasks,	133

Dockerfiles,	55
commands,	96
creating,	96–100
format	of,	95
instructions	for,	96
MySQL	Dockerfiles,	96–100

evolution	of,	75
images,	54
creating,	222–227
reusability,	57

installing
Mac	OS	X	installations,	61–65
Ubuntu	Linux	installations,	68–72

Windows	installations,	66–68
online	resources,	60
registries,	55
releases,	changes	between,	75
servers/daemons,	54
VM	advantages,	56–57

docker0.	See	bridges

E
e-commerce	systems,	microservices	versus	monolithic	applications,	6–8
Eclipse	IDE

helpdesk	application	case	study,	190–193,	213
microservices,	building,	213

efficiency
Docker	containers,	57
VM,	51,	52

Ethernet	devices	(virtual),	Linux	networking,	106
examples,	Docker	containers,	57–60

F
failsafe	design

microservices,	implementing,	38
web	services,	25

failure	handling,	microservices,	17
fault	handling,	helpdesk	application	case	study,	219
fault	isolation,	microservices,	10
files

copying	from	containers	and	local	machines,	91–92
listing	changed	files/directories	in	Docker	containers,	95

flexibility,	VM,	51

G
gcplogs	logging	driver,	145
GELF	logging	driver,	146
getAccount	service,	helpdesk	application	case	study,	176
getAllMessage	service,	helpdesk	application	case	study,	187–188

getAvailableDates	service,	helpdesk	application	case	study,	185–186
getAvailableTimeSlots	service,	helpdesk	application	case	study,	185
getCatalog	service,	helpdesk	application	case	study,	182
getMessage	service,	helpdesk	application	case	study,	187
Google,	Kubernetes	and	container	orchestration,	123–124

kubectl	command-line	interface,	124
master	node,	124–127

Grafana	user	interface
configuring,	159–160
Prometheus	and,	157–160

H
Heapster	monitoring,	150–151
helpdesk	application	case	study,	171,	173

account	management,	175
addAccount	service,	176–177
deleteAccount	service,	178
getAccount	service,	176
updateAccount	service,	177

administration,	247,	248–261
appointments,	184–185
getAvailableDates	service,	185–186
getAvailableTimeSlots	service,	185
saveAppointment	service,	186

architecture	of,	172–173
authentication,	173–174,	248–249
authorization,	175
bug	fixes,	200–202
building	application,	190–197
configuring,	198–200
containerizing	microservices,	221
accessing	microservices,	245–246
building	binaries,	222
building	WAR	files,	222
creating	Docker	images,	222–227
DC/OS	cluster	setup,	227–235

deploying	microservices,	235–242
inspecting	microservices,	239–245
listing	dependencies,	222
scaling	microservices,	239–245
submitting	tasks	to	Marathon,	236–242

customers,	247–248
deploying,	198–200
flow	of,	247–261
Interceptor,	174
message	board,	186–187
createMessage	service,	188–189
getAllMessage	service,	187–188
getMessage	service,	187

migrating	to	microservices,	203
bug	fixes,	217–219
building	microservices,	212–213
configuring	microservices,	213–217
deploying	microservices,	205,	213–217
fault	handling,	219
helper	services,	205
microservice	conversion	process,	206–207
planning	migrations,	203–204
product	catalog,	208–211
requirements,	217–219
scalability,	205,	219
searches,	211–212
storage	alternatives/polyglot	persistence,	205
technology	alternatives/polyglot	programming,	205
ticketing,	211
troubleshooting,	217–219

overview	of,	171–172
product	catalog,	181
addCatalog	service,	182–183
deleteCatalog	service,	184
getCatalog	service,	182
updateCatalog	service,	183

requirements,	200–202
searches,	189
support,	251
ticketing,	178–179
createTicket	service,	179
viewAllTicket	service,	180–181
viewTicket	service,	180

troubleshooting,	200–202
updating,	246
user	roles,	248–251

helper	microservices,	5–6
helper	services,	migrating	to	microservices,	43,	205
host	networking	option,	Docker	containers,	111–113
hybrid	approach,	microservice	creation,	45

I
images

Docker	images,	54
creating,	222–227
reusability,	57

MySQL	images
reating	from	container	changes,	94–95
listing	available	images,	76–77
removing	from	local	machines,	77
running,	77–79
searching	for,	73–75

implementing	microservices,	38
environment	security/automation,	38
failsafe	design,	38
independency,	38
reusability,	38–39
source	control,	38
tagging,	39

installing
Docker
Mac	OS	X	installations,	61–65

Ubuntu	Linux	installations,	68–72
Windows	installations,	66–68

Solr	search	engine,	247–266
Interceptor,	helpdesk	application	case	study,	174
Internet	resources

API,	149
Docker,	60
Kubernetes,	129
Prometheus,	167

interprocess	communication.	See	communication,	microservices
iptables,	106

J
Journald	logging	driver,	145
json-file	logging	driver,	145,	146

K
Kubernetes,	container	orchestration,	123–124

kubectl	command-line	interface,	124
kubelet,	127
Kubernetes	Services,	128
master	node,	124
API	servers,	124–125
replication	controller	(controller	manager),	126–127
scheduler,	125–126

online	resources,	129
pods,	127–129
worker	nodes,	127

L
latency,	microservices,	11
learning	curve,	switching	to	microservices,	15–17
life	span	of	software	in	monolithic	applications,	18
linking,	Docker	containers,	106–109
Linux

bridges,	106

Docker	installations,	68–72
iptables,	106
namespaces,	105–106
networking,	105
bridges,	106
iptables,	106
namespaces,	105–106
virtual	Ethernet	devices,	106

virtual	Ethernet	devices,	106
listing

available	MySQL	images,	76–77
changed	files/directories	in	Docker	containers,	95
dependencies,	containerizing	microservices,	222
running	Docker	containers,	79–80

log	files,	viewing	Docker	containers,	80–83
logging

awslog	logging	driver,	145
changing	drivers,	146–147
Docker	containers,	144–147
gcplogs	logging	driver,	145
GELF	logging	driver,	146
Journald	logging	driver,	145
json-file	logging	driver,	145,	146
Splunk	logging	driver,	145
Syslog	logging	driver,	145

LXC	(Linux	containers),	52–53
Docker	containers	versus	LXC,	53–54
portability,	54
processes,	running,	53

M
Mac	OS	X,	Docker	installations,	61–65
Macvlan	(underlay	network	drivers),	121–122
maintaining	microservices,	18,	19,	25–26
managing

accounts,	helpdesk	application	case	study,	175–178

Docker	containers
logging,	144–147
monitoring	containers,	143–144

microservices,	16
Marathon.	See	Mesos	+	Marathon,	container	orchestration
marketing	microservices,	19,	20–22
Mesos	+	Marathon

container	orchestration,	129
agents,	130–131
frameworks,	131–132
Mesos	master,	130
submitting	tasks	to	Marathon,	236–242

message	board,	helpdesk	application	case	study,	186–187
createMessage	service,	188–189
getAllMessage	service,	187–188
getMessage	service,	187

message	buses,	microservice	communication,	37
metrics	collection	and	containers,	147–149
microservices

accessing,	245–246
advantages	of,	9–11
automation,	38,	39
backward	compatibility,	25
building,	18,	19,	212–213
communication,	15
API	gateways,	27
asynchronous	communication,	23–24
creating	microservices,	37
discovery	services,	26–29
maintaining,	25–26
message	buses,	37
publish/subscribe	method,	24
service	registries,	27–28
synchronous	communication,	23
web	services,	24–25
writing	web	services,	25–26

complexity	of,	11
configuring,	17,	213–217
containerizing,	221,	222
continuous	delivery,	9
creating
API	gateways,	40
circuit	breakers,	40
communication,	37
deployment	phase,	39
hybrid	approach,	45
implementation	phase,	38–39
monitoring,	40
operational	support,	40
organizational	readiness,	36
scalability,	40
services-based	approach,	36–37
technology	selection,	37–38

data	segregation,	10
decentralization	of	data,	10
defined,	3–4
defining	for	functions,	44
deploying,	39,	43,	205,	213–217,	235
DevOps	and,	20–22,	248–250
disadvantages	of,	11
discovery	process,	15
e-commerce	systems,	6–8
failure	handling,	17
fault	handling,	219
fault	isolation,	10
helper	microservices,	5–6
implementing,	38
environment	security/automation,	38
failsafe	design,	38
independency,	38
reusability,	38–39
source	control,	38

tagging,	39
inspecting,	239–245
latency,	11
maintaining,	18,	19
managing,	16
marketing,	19,	20–22
migrating	to,	40–42
bug	fixes,	217–219
building	microservices,	212–213
configuring	microservices,	213–217
data	migration,	44
defining	for	functions,	44
deploying	microservices,	43,	205,	213–217
fault	handling,	219
helpdesk	application	case	study,	203–219
helper	services,	43,	205
independent	builds/deployments,	45
microservice	conversion	process,	206–207
modification	requests,	43
monolithic	code,	44
need	for	migration,	33–35
performance,	42
planning	migrations,	203–204
polyglot	programming/technology	alternatives,	205
product	catalog,	208–211
rearchitecting	services,	44–45
refactoring	code,	44
removing	old	code,	45
requirements,	217–219
scalability,	42,	205,	219
searches,	211–212
storage	alternatives/polyglot	persistence,	43,	205
technology	alternatives/polyglot	programming,	42–43
ticketing,	211
troubleshooting,	217–219
versioning	microservices,	44,	45

modularity,	8–9
monitoring,	17,	25–26,	40
monolithic	applications	versus,	4–5,	6–8,	9–11
performance,	migrating	to	microservices,	42
scalability,	5,	9–10,	16,	19,	20–21,	37,	40,	42,	239–245
security,	16,	37,	37,	38
service	discovery,	139
standalone	microservices,	15
switching	to
business	case	for	switching,	17–18,	22
cost	of,	18–22
cultural	change,	14–15
learning	curve,	15–17
monolithic	application	attributes,	14
monolithic	application	fatigues,	14
operational	processes,	15

testing,	16
troubleshooting,	11,	217–219
updating,	5,	18,	20
upgrading,	16
version	control,	11
versioning,	44,	45

migrating
data,	microservices	migration,	44
to	microservices,	40–42
bug	fixes,	217–219
building	microservices,	212–213
configuring	microservices,	213–217
data	migration,	44
defining	for	functions,	44
deploying	microservices,	43,	205,	213–217
fault	handling,	219
helpdesk	application	case	study,	203–204,	205,	206–207,	208–219
helper	services,	43,	205
independent	builds/deployments,	45
microservice	conversion	process,	206–207

modification	requests,	43
monolithic	code,	44
need	for	migration,	33–35
performance,	42
planning	migrations,	203–204
product	catalog,	208–211
rearchitecting	services,	44–45
refactoring	code,	44
removing	old	code,	45
requirements,	217–219
scalability,	42,	205,	219
searches,	211–212
storage	alternatives/polyglot	persistence,	43
technology	alternatives/polyglot	programming,	42–43
ticketing,	211
versioning	microservices,	44,	45
VM,	51

modification	requests,	migrating	to	microservices,	43
modularity	of	microservices,	8–9
monitoring

cAdvisor,	149–150,	155–156
Docker	containers,	143–144
Heapster,	150–151
microservices,	17,	25–26,	40
Prometheus,	151–152
adding	targets,	156
Alertmanager	and,	165–167
cAdvisor	and,	155–156
Grafana	user	interface	and,	157–160
Node	Exporter	and,	155–156
online	resources,	167
running,	152–155
viewing	stats,	160–165

monolithic	applications
complexity	of,	9
e-commerce	systems,	6–8

fatigues,	14
helpdesk	application	case	study,	171,	173
account	management,	175–178
appointments,	184–186
architecture	of,	172–173
authentication,	173–174
authorization,	175
bug	fixes,	200–202
building	application,	193–197
configuring,	198–200
configuring	Eclipse	IDE,	190–193
deploying,	198–200
Interceptor,	174
message	board,	186–189
overview	of,	171–172
product	catalog,	181–184
requirements,	200–202
searches,	189
ticketing,	178–181
troubleshooting,	200–202

microservices,	migrating	to,	40–42
data	migration,	44
defining	for	functions,	44
deploying	microservices,	43
helper	services,	43
independent	builds/deployments,	45
modification	requests,	43
monolithic	code,	44
need	for	migration,	33–35
performance,	42
rearchitecting	services,	44–45
refactoring	code,	44
removing	old	code,	45
scalability,	42
storage	alternatives/polyglot	persistence,	43
technology	alternatives/polyglot	programming,	42–43

versioning	microservices,	44,	45
microservices,	switching	to
attributes,	14
business	case	for	switching,	17–18,	22
cost	of,	18–22
cultural	change,	14–15
fatigues,	14
learning	curve,	15–17
operational	processes,	15

microservices	versus,	4–5,	6–8,	9–11
software,	life	span	in	monolithic	applications,	18

monolithic	code,	microservices	migration,	44
MySQL

Dockerfiles,	96–100
images
creating	from	container	changes,	94–95
listing	available	images,	76–77
removing	from	local	machines,	77
running,	77–79
searching	for,	73–75

N
namespaces	(Linux),	105–106
naming,	Docker	containers,	90–91
networking	(Linux),	105

bridges,	106
custom	bridge	networks,	117–118
Docker	containers
bridges,	113–116
default	connection	options,	110
linking,	106–109
none	(no	connection)	option,	110–111

iptables,	106
namespaces,	105–106
overlay	network	drivers,	119–120
port	mapping,	118–119

underlay	network	drivers	(Macvlan),	121–122
virtual	Ethernet	devices,	106

Node	Exporter	and	Prometheus,	155–156

O
old	code	(migrating	to	microservices),	removing,	45
online	resources

API,	149
Docker,	60
Kubernetes,	129
Prometheus,	167

operational	complexity	of	microservices,	11
operational	processes,	switching	to	microservices,	15
OS	freedom	and	VM,	51
overlay	network	drivers,	119–120

P
pausing	processes	in	Docker	containers,	92–93
performance

microservices,	migrating	to,	42
VM,	51,	52

planning	microservice	migrations,	helpdesk	application	case	study,	203–204
pods,	Kubernetes	and	container	orchestration,	127–129
polyglot	persistence/storage	alternatives,	migrating	to	microservices,	43,	205
polyglot	 programming/technology	 alternatives,	 migrating	 to	 microservices,
42–43,	205

port	mapping,	118–119
portability

Docker	containers,	56
LXC	versus	Docker	containers,	54
VM,	51–52

processes	(LXC	versus	Docker	containers),	running,	53
product	catalog,	helpdesk	application	case	study,	181

addCatalog	service,	182–183
deleteCatalog	service,	184
getCatalog	service,	182

migrating	to	microservices,	208–211
updateCatalog	service,	183

Prometheus	monitoring,	151–152
Alertmanager	and,	165–167
cAdvisor	and,	155–156
Grafana	user	interface	and,	157–160
Node	Exporter	and,	155–156
online	resources,	167
running,	152–155
stats,	viewing,	160–165
targets,	adding,	156

publish/subscribe	method,	microservice	communication,	24

Q–R
recovery/backups,	VM,	51
refactoring	code,	migrating	to	microservices,	44
registries	(Docker),	55
removing

Docker	containers,	86–87
images	from	local	machines,	77
old	code,	migrating	to	microservices,	45

renaming	Docker	containers,	90–91
replication	 controller	 (controller	 manager),	 Kubernetes	 and	 container
orchestration,	126–127

requirements,	helpdesk	application	case	study,	200–202,	217–219
resource	utilization,	VM,	52
REST	API,	149
restarting	Docker	containers,	85
reusing

code,	migrating	to	microservices,	44
Docker	images,	57
microservices,	38–39

running
commands	in	Docker	containers,	89
Docker	containers
attaching	to	running	containers,	85–86

listing	running	containers,	79–80
images,	77–79

S
saveAppointment	service,	helpdesk	application	case	study,	186
scalability

helpdesk	application	case	study,	219,	239–245
microservices,	5,	9–10,	16,	19,	20–21,	37,	40,	42,	205,	239–245

scheduler,	Kubernetes	and	container	orchestration,	125–126
searches

database-based	searches,	211–212
docker	search	command,	73–75
helpdesk	application	case	study,	189,	211–212
MySQL	images,	73–75
Solr	search	engine,	212,	247–266

security,	microservices,	16,	37,	37,	38
segregation	of	data,	microservices,	10
servers

API	servers,	Kubernetes	and	container	orchestration,	124–125
Docker	servers/daemons,	54

service	registries,	discovery	services	and	microservice	communication,	27–28
services

Docker	Swarms,	133,	135
service	discovery,	136–137
Amazon	Web	Services,	138
client-side	discovery,	137–138
microservices,	139
server-side	discovery,	138–139

service	registry,	139–141
sharing	VM,	51
shopping	 carts	 (e-commerce	 systems),	 microservices	 versus	 monolithic
applications,	7–8

SOA-based	monolithic	applications
e-commerce	systems,	6–8
fatigues,	14
microservices,	switching	to

attributes,	14
business	case	for	switching,	17–18,	22
cost	of,	18–22
cultural	change,	14–15
fatigues,	14
learning	curve,	15–17
operational	processes,	15

microservices	versus,	4–5,	6–8,	9–11
software,	life	span	in	monolithic	applications,	18

software
dependencies	(containerizing	microservices),	listing,	222
life	span	in	monolithic	applications,	18

Solr	search	engine,	212,	247–266
Splunk	logging	driver,	145
standalone	microservices,	15
storage

Docker	containers,	53
storage	alternatives/polyglot	persistence,	migrating	to	microservices,	43,	205

subscribe/publish	method,	microservice	communication,	24
support,	helpdesk	application	case	study,	251
Swarms	(Docker),	55,	120–121,	132

nodes,	132
services,	133,	135
Swarm	clusters,	133–136
tasks,	133

synchronous	communication,	microservices,	23
Syslog	logging	driver,	145

T
tagging	microservices,	39
technology	 alternatives/polyglot	 programming,	 migrating	 to	 microservices,
42–43,	205

testing	microservices,	16
ticketing,	helpdesk	application	case	study,	178–179,	211

createTicket	service,	179
viewAllTicket	service,	180–181

viewTicket	service,	180
transitioning	to	microservices,	40–42

data	migration,	44
defining	for	functions,	44
deploying	microservices,	43
helper	services,	43
independent	builds/deployments,	45
modification	requests,	43
monolithic	code,	44
need	for	migration,	33–35
performance,	42
rearchitecting	services,	44–45
refactoring	code,	44
removing	old	code,	45
scalability,	42
storage	alternatives/polyglot	persistence,	43
technology	alternatives/polyglot	programming,	42–43
versioning	microservices,	44,	45

troubleshooting
helpdesk	application	case	study,	200–202,	217–219
microservices,	11,	217–219

U
Ubuntu	Linux,	Docker	installations,	68–72
underlay	network	drivers	(Macvlan),	121–122
updateAccount	service,	helpdesk	application	case	study,	177
updateCatalog	service,	helpdesk	application	case	study,	183
updating

helpdesk	application	case	study,	246
microservices,	5,	18,	20

upgrading	microservices,	16
usage	examples,	Docker	containers,	57–60
user	roles,	helpdesk	application	case	study,	248–251

V
version	control,	microservices,	11

versioning	microservices,	44,	45
viewAllTicket	service,	helpdesk	application	case	study,	180–181
viewing	Docker	containers

container	information,	87–89
log	files,	80–83

viewTicket	service,	helpdesk	application	case	study,	180
virtual	Ethernet	devices,	Linux	networking,	106
VM	(Virtual	Machines)

advantages	of,	50–51
backups/recovery,	51
defined,	50
deploying,	57–58
disadvantages	of,	49–52
Docker,	VM	advantages,	56–57
efficiency,	51,	52
flexibility,	51
migrating,	51
OS	freedom,	51
performance,	51,	52
portability,	51–52
resource	utilization,	52
sharing,	51

W–X–Y–Z
WAR	files,	building,	containerizing	microservices,	222
web	resources

API,	149
Docker,	60
Kubernetes,	129
Prometheus,	167

web	services
failsafe	design,	25
maintaining,	25–26
writing,	24–25

Windows,	Docker	installations,	66–68
WordPress	sites,	Docker	containers	deployment	example,	57–60

Credits

Figures	6.1-6.10,	7.1-7.47,	10.4,	10.7,	10.11,	10.15,	10.16,	10.23:	Screenshot	of
Docker	captured	©	2018	Docker	Inc.	All	rights	reserved.

Figures	 6.11,	 11.2,	 13.5-13.14:	 Screenshot	 of	Microsoft	 captured	©	Microsoft
2018

Figures	 6.13-6.16:	 Screenshot	 of	 Ubuntu	 ©	 2018	 Canonical	 Ltd.	 Ubuntu	 and
Canonical	are	registered	trademarks	of	Canonical	Ltd.

Figures	 8.18,	 11.6-11.8,	 12.4,	 B.2:	 Screenshot	 from	 Copyright	 ©	 2017	 The
Apache	Software	Foundation,	Licensed	under	the	Apache	License,	Version	2.0

Figures	 10.12-10.14,	 10.17-10.22:	 Screenshot	 of	 Grafana	 captured	 Copyright
2018	©	Grafana	Labs.

Figures	 11.3-11.5,	 12.2,	 12.3:	 Screenshot	 of	 Eclipse	 Copyright	 ©	 2018	 The
Eclipse	Foundation.

Code	Snippets

	Cover Page
	Title Page
	Copyright Page
	Dedication
	Contents
	About This E-Book
	Preface
	Acknowledgments
	About the Author
	Part I: Microservices
	Chapter 1: An Introduction to Microservices
	What Are Microservices?
	Modular Architecture
	Other Advantages of Microservices
	Disadvantages of Microservices

	Chapter 2: Switching to Microservices
	Fatigues and Attributes
	Learning Curve for the Organization
	Business Case for Microservices
	Cost Components

	Chapter 3: Interprocess Communication
	Types of Interactions
	Preparing to Write Web Services
	Microservice Maintenance
	Discovery Service
	API Gateway
	Service Registry

	Putting It All Together

	Chapter 4: Migrating and Implementing Microservices
	The Need for Transition
	Creating a New Application with Microservices
	Organization Readiness
	Services-Based Approach
	Interprocess (Service-to-Service) Communication
	Technology Selection
	Implementation
	Deployment
	Operations

	Migrating a Monolithic Application to Microservices
	Microservices Criteria
	Rearchitecting the Services

	A Hybrid Approach

	Part II: Containers
	Chapter 5: Docker Containers
	Virtual Machines
	Containers
	Docker Architecture and Components
	The Power of Docker: A Simple Example

	Chapter 6: Docker Installation
	Installing Docker on Mac OS X
	Installing Docker on Windows
	Installing Docker on Ubuntu Linux

	Chapter 7: Docker Interface
	Key Docker Commands
	Docker Search
	Docker Pull
	Docker Images
	Docker RMI
	Docker Run
	Docker ps
	Docker Logs
	Docker Restart
	Docker Attach
	Docker Remove
	Docker Inspect
	Docker Exec
	Docker Rename
	Docker Copy
	Docker Pause/Unpause
	Docker Create
	Docker Commit
	Docker Diff

	Dockerfile
	MySQL Dockerfile

	Docker Compose

	Chapter 8: Containers Networking
	Key Linux Concepts
	Linking
	Default Options
	None
	Host
	Bridge

	Custom Networks
	Custom Bridge Network Driver
	Overlay Network Driver
	Underlay Network Driver or Macvlan

	Chapter 9: Container Orchestration
	Kubernetes
	Kubectl
	Master Node
	Worker Nodes
	Example: Kubernetes Cluster

	Apache Mesos and Marathon
	Mesos Master
	Agents
	Frameworks
	Example: Marathon Framework

	Docker Swarm
	Nodes
	Services
	Task
	Example: Swarm Cluster

	Service Discovery
	Service Registry

	Chapter 10: Containers Management
	Monitoring
	Logging
	Metrics Collection
	docker stats
	APIs
	cAdvisor

	Cluster-wide Monitoring Tools
	Heapster
	Prometheus
	Step 1: Running Prometheus
	Step 2: Adding Node Exporter and cAdvisor
	Step 3: Adding Targets
	Step 4: Bringing Up the User Interface: Grafana
	Step 5: Viewing the Stats
	Step 6: Integrating the Alertmanager

	Part III: Hands-On Project—Putting Learning into Practice
	Chapter 11: Case Study: Monolithic Helpdesk Application
	Helpdesk Application Overview
	Application Architecture
	Authentication, Interceptor, and Authorization
	Account Management
	Ticketing
	Product Catalog
	Appointments
	Message Board
	Search

	Building the Application
	Setting Up Eclipse
	Building the Application
	Deploying and Configuring

	New Requirements and Bug Fixes

	Chapter 12: Case Study: Migration to Microservices
	Planning for Migration
	Applying Microservices Criteria
	Conversion Summary
	Impact on Architecture

	Converting to Microservices
	Product Catalog
	Ticketing
	Search

	Application Build and Deployment
	Code Setup
	Building the Microservices
	Deploying and Configuring

	New Requirements and Bug Fixes

	Chapter 13: Case Study: Containerizing a Helpdesk Application
	Containerizing Microservices
	Listing Dependencies
	Build Binaries and WAR files
	Creating a Docker Image
	Building the Docker Image
	DC/OS Cluster Setup on AWS

	Deploying the Catalog Microservice
	Submitting a Task to Marathon
	Inspecting and Scaling the Service
	Accessing the Service

	Updating the Monolithic Application

	Conclusion
	What Is DevOps?
	Only the Beginning

	Appendix A: Helpdesk Application Flow
	Administrator Flows
	Login
	Administration and Supported Products

	Customer Flows
	My Products
	Create an Incident
	View Incident
	Message Board
	Make Appointment
	Search
	My Profile

	Support Desk Engineer Flows
	View All Tickets
	View Tickets

	Appendix B: Installing the Solr Search Engine
	Prerequisites
	Installation Steps
	Configuring Solr for Simple Data Import

	Index

