NMICROIS=RVICI==

AND

CONTAINERS

RARMINMBDER SINGH KOECHER

About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for
EPUB and its many features varies across reading devices and applications. Use
your device or app settings to customize the presentation to your liking. Settings
that you can customize often include font, font size, single or double column,
landscape or portrait mode, and figures that you can click or tap to enlarge. For
additional information about the settings and features on your reading device or
app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize
the presentation of these elements, view the e-book in single-column, landscape
mode and adjust the font size to the smallest setting. In addition to presenting
code and configurations in the reflowable text format, we have included images
of the code that mimic the presentation found in the print book; therefore, where
the reflowable format may compromise the presentation of the code listing, you
will see a “Click here to view code image” link. Click the link to view the print-
fidelity code image. To return to the previous page viewed, click the Back button
on your device or app.

Microservices and Containers

Parminder Singh Kocher

vvAddison-Wesley

Boston ¢ Columbus ¢ Indianapolis * New York ¢ San Francisco * Amsterdam -
Cape Town Dubai * London * Madrid « Milan ¢« Munich ¢ Paris * Montreal °
Toronto ¢ Delhi « Mexico City Sao Paulo ¢ Sydney ¢ Hong Kong ¢ Seoul
Singapore ¢ Taipei * Tokyo

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017963682
Copyright © 2018 Pearson Education, Inc.

Microsoft and/or its respective suppliers make no representations about the
suitability of the information contained in the documents and related graphics
published as part of the services for any purpose. All such documents and related
graphics are provided “as is” without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to
this information, including all warranties and conditions of merchantability,
whether express, implied or statutory, fitness for a particular purpose, title and
non-infringement. In no event shall Microsoft and/or its respective sup-pliers be
liable for any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with
the use or performance of information available from the services.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw

The documents and related graphics contained herein could include technical
inaccuracies or typographical errors. Changes are periodically added to the
information herein. Microsoft and/or its respective sup-pliers may make
improvements and/or changes in the product(s) and/or the program(s) described
herein at any time. Partial screenshots may be viewed in full within the software
version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft
Corporation in the U.S.A. and other countries. Screenshots and icons reprinted
with permission from the Microsoft Corporation. This book is not sponsored or
endorsed by or affiliated with the Microsoft Corporation.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-459838-3
ISBN-10: 0-13-459838-5

1 18

http://www.pearsoned.com/permissions/

This book is dedicated to my mom and dad. Without their love and
countless blessings, it just wouldn’t have been possible.

Contents

Preface
Acknowledgments
About the Author

Part I: Microservices

Chapter 1: An Introduction to Microservices
What Are Microservices?
Modular Architecture
Other Advantages of Microservices
Disadvantages of Microservices

Chapter 2: Switching to Microservices
Fatigues and Attributes
Learning Curve for the Organization
Business Case for Microservices
Cost Components

Chapter 3: Interprocess Communication

Types of Interactions
Preparing to Write Web Services
Microservice Maintenance
Discovery Service

API Gateway

Service Registry
Putting It All Together

Chapter 4: Migrating and Implementing Microservices
The Need for Transition
Creating a New Application with Microservices
Organization Readiness

Services-Based Approach
Interprocess (Service-to-Service) Communication
Technology Selection
Implementation
Deployment
Operations
Migrating a Monolithic Application to Microservices
Microservices Criteria
Rearchitecting the Services
A Hybrid Approach

Part II: Containers

Chapter 5: Docker Containers
Virtual Machines
Containers
Docker Architecture and Components
The Power of Docker: A Simple Example

Chapter 6: Docker Installation
Installing Docker on Mac OS X
Installing Docker on Windows
Installing Docker on Ubuntu Linux

Chapter 7: Docker Interface
Key Docker Commands

Docker Search
Docker Pull
Docker Images
Docker RMI
Docker Run
Docker ps
Docker Logs
Docker Restart

Docker Attach
Docker Remove
Docker Inspect
Docker Exec
Docker Rename
Docker Copy
Docker Pause/Unpause
Docker Create
Docker Commit
Docker Diff
Dockerfile
MySQL Dockerfile
Docker Compose

Chapter 8: Containers Networking

Key Linux Concepts

Linking

Default Options
None
Host
Bridge

Custom Networks
Custom Bridge Network Driver
Overlay Network Driver
Underlay Network Driver or Macvlan

Chapter 9: Container Orchestration
Kubernetes
Kubectl
Master Node
Worker Nodes
Example: Kubernetes Cluster
Apache Mesos and Marathon

Mesos Master

Agents

Frameworks

Example: Marathon Framework
Docker Swarm

Nodes

Services

Task

Example: Swarm Cluster
Service Discovery
Service Registry

Chapter 10: Containers Management

Monitoring

Logging

Metrics Collection
docker stats
APIs
cAdvisor

Cluster-wide Monitoring Tools
Heapster
Prometheus
Step 1: Running Prometheus
Step 2: Adding Node Exporter and cAdvisor
Step 3: Adding Targets
Step 4: Bringing Up the User Interface: Grafana
Step 5: Viewing the Stats
Step 6: Integrating the Alertmanager

Part I1I: Hands-On Project—Putting Learning into Practice

Chapter 11: Case Study: Monolithic Helpdesk Application
Helpdesk Application Overview
Application Architecture

Authentication, Interceptor, and Authorization
Account Management
Ticketing
Product Catalog
Appointments
Message Board
Search
Building the Application
Setting Up Eclipse
Building the Application
Deploying and Configuring
New Requirements and Bug Fixes

Chapter 12: Case Study: Migration to Microservices
Planning for Migration
Applying Microservices Criteria
Conversion Summary
Impact on Architecture
Converting to Microservices
Product Catalog
Ticketing
Search
Application Build and Deployment
Code Setup
Building the Microservices
Deploying and Configuring
New Requirements and Bug Fixes

Chapter 13: Case Study: Containerizing a Helpdesk Application
Containerizing Microservices
Listing Dependencies
Build Binaries and WAR files
Creating a Docker Image

Building the Docker Image
DC/OS Cluster Setup on AWS
Deploying the Catalog Microservice
Submitting a Task to Marathon
Inspecting and Scaling the Service
Accessing the Service
Updating the Monolithic Application
Conclusion
What Is DevOps?
Only the Beginning
Appendix A: Helpdesk Application Flow
Administrator Flows
Login

Administration and Supported Products

Customer Flows
My Products
Create an Incident
View Incident
Message Board
Make Appointment
Search
My Profile

Support Desk Engineer Flows
View All Tickets
View Tickets

Appendix B: Installing the Solr Search Engine

Prerequisites
Installation Steps

Configuring Solr for Simple Data Import

Index

Preface

As always, the technology sector is in the midst of momentous transitions—the
Internet of things, software-enabled networking, and software as a service
(SaaS), to name but a few. Because of these innovations, there is a large demand
for platforms and architectures that can improve the process of application
development and deployment. Companies of many sizes now require
frameworks and architectures that can simplify their applications’ update
processes, allowing their latest versions to go to market more frequently without
adding undue overhead to the development and deployment teams.

This transition, like many of its cousins, is still young, yet many technologies
and frameworks in the space have already come and gone. The winners remain
standing, however, continuing to improve the world’s software by allowing its
developers—us—to create new applications and update existing ones with more
agility than ever before. Two such winners? Microservices and containers, red-
hot topics that, in my opinion, also possess staying power. Compared to the
monolithic approach, the most common way of developing and deploying
applications, microservices simplify those processes, especially with large
projects that require multiple teams and increasingly long code. In such cases,
even a small change in the code can cause serious delays. Microservices can
handle today’s large codes by incorporating agility and scalability into
application development and deployment, all within a proven paradigm.

That’s where this book comes in. When I first started learning about
microservices, there were several valuable online resources (in particular, I
recommend the websites microservices.io, by Chris Richardson, and
martinfowler.com, by James Lewis and Martin Fowler), but I could not find
many books that systematically built a case for why a CTO or director of an
engineering team should (or should not) make the transition to microservices.
There was a clear gap in the market; the more I mastered the subject matter, the
more [thought, “Why can’t I be the one to fill that gap?” Soon I was
brainstorming ideas for a book of my own.

Is This Book for You?

I wrote this book with two audiences in mind. The first group includes students,
designers, and architects with experience in software and systems engineering.

http://martinfowler.com

Although you might be familiar with microservices and/or containers, this is
probably your first book dedicated entirely to them. It should provide you not
only with a comprehensive overview on the subjects but also with enough
information and analysis to help you decide when—and when not—to utilize
these technologies. Those of you who already have hands-on experience with
microservices and/or containers may want to skim through Parts I and II and
dive straight into Part III, which presents a full-fledged service desk example,
written by following the standard service-oriented architectures (SOA)
methodologies. This case study discusses how one such application’s
architecture can be converted to a microservices-based architecture as well as
how Docker containers fit into the picture. I think this deep dive under the hood
will be a real treat and ultimately pique your interest enough to delve into the
world of microservices and containers yourself.

My other target readers are non-programmers coming at the topic from a
business perspective—executives or project managers interested in learning the
basics. Perhaps you read an intriguing blog post about microservices. Could that
be the solution your team has been searching for but you couldn’t seem to find a
good follow-up book? Maybe you’ve overheard the engineers discussing Docker
containers and want to learn enough to fit in and talk the talk. Whatever your
reasons, this book—essentially a primer chock full of easy-to-understand
examples and minimal jargon—should be ideal for any manager considering
new ways to update or develop new applications more effectively.

This book is for anyone trying to accomplish any or all of the following:

 « Make his or her organization more effective in building industrial-strength
software.

« « Transition into microservices and Docker containers while understanding
how they differ from SOA.

* « Learn microservices and Docker as part of his or her school curriculum to
gain new, highly marketable skills.

In short, this book is for anyone who wants to learn more about microservices
and Docker containers. I hope you are one of them! Let’s get started.

Register your copy of Microservices and Containers on the InformlT site
for convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register and

http://informit.com/register

log in or create an account. Enter the product ISBN (9780134598383) and
click Submit. Look on the Registered Products tab for an Access Bonus
Content link next to this product, and follow that link to access any
available bonus materials. If you would like to be notified of exclusive
offers on new editions and updates, please check the box to receive email
from us.

Acknowledgments

As someone who has spent his entire career in tech, I never thought I would
write a book. I was an engineer, not an author. And so, before embarking on this
challenge, I had little idea what went into authoring a book—and how tough it
would be. Let’s just say, I knew it would be a lot of work, but not this much
work. Writing this book would have been difficult enough if I had been able to
devote my working days to it. Writing it while continuing to work full time
seemed downright impossible at times! And it would have been, too, were it not
for the many talented and generous people who guided and supported me every
step of the way.

First, to the entire team at Pearson, thank you for accepting my proposal and
guiding me through the entire editorial process. In particular, I want to thank my
main contact there, Christopher Guzikowski for his guidance at every step, for
his trust that I could do this, and for his patience while I worked on this book.
Also big thanks to Michael Thurston for his indispensable editing and quick
turnaround time.

This book would not have been possible without similar aid and support from
many friends, starting with Lenin Lakshminarayanan and Anuj Singh, who spent
countless evenings and weekends with me helping with all the code-related
aspects of the case study, a critical section of this book. Many thanks to Gerald
Cantor, who read multiple drafts and provided honest, invaluable feedback; Ravi
Papisetti, Nawaz Akther, Sameer Nair, and Gurvinder Singh for providing useful
insights and suggestions; and Michael Wolman for reviewing every word of this
book.

This book also would have been impossible without the motivation and
guidance I received. Whenever I had doubts, I would seek guidance from my
mentors, who played a huge role in getting me to this point in my career. In
particular, I would like to thank Greg Carter, my mentor for the past 12 years, for
his unconditional support and guidance; Sunil Kripalani, for always trusting me
and pushing me to be innovative and strive to make an impact; and Antonio
Nucci, a true visionary—just talking with him motivates me to accomplish more.

Last but certainly not least, I want to thank my family for putting up with me
during this rewarding but frequently stressful experience! To my children,
Prabhleen, Jashminder, and Jasleen, for spending countless weekends without

me and understanding that Papa was working on his passion. And finally,
especially, to my beautiful wife, Raman, for her inspiration, encouragement, and
trust in me. If not for her support, this book would have remained merely a
dream, not a reality.

Thank you all so much!

About the Author

Parminder Singh Kocher was born and raised in India and is a lifelong
technology learner with two decades of hands-on experience in building
enterprise-grade software systems. He has been with Cisco Systems since 2005
and managed the Cisco’s Managed Services (CMS) platform, and has since
worked as an innovation evangelist leading multiple software groups. Currently,
he is engineering director for Cisco Networking Academy platform, where he
leads the engineering teams responsible for developing the Academy’s next-gen
platform accesses in 180 countries. In addition to bachelor’s and master’s
degrees in computer science, Kocher has an executive MBA from Baylor’s
Hankamer School of Business and an executive certificate in strategy and
innovation from MIT’s Sloan School of Management. He lives in Austin, Texas,
with his wife and three children.

PART 1

Microservices

Chapter 1

An Introduction to Microservices

Technology has changed, and continues to change, how the world behaves. In
turn, these altered behaviors are putting new, challenging demands on the
technology that supports it all. We have progressed from an era of 56k dialup
modems to 100Gbps Ethernet in less than two decades. As the speed increased,
it placed greater demand on corporations to develop faster software for which
advanced and high-level software languages were developed to suit application
needs. Similarly, on the systems side, we have evolved from mainframes to high-
speed servers to making servers a commodity to virtualization and cloud. Now
“containerize” is a verb, as containers are being utilized to use resources more
efficiently.

Along the way, new paradigms such as model-view—controller (MVC),
enterprise integration patterns (EIPs), and service-oriented architectures (SOAS)
were released. Microservices-based architecture is now the talk of the tech
world. Let’s find out why.

What Are Microservices?

A microservice is an independent, standalone capability designed as an
executable or a process that communicates with other microservices through
standard but lightweight interprocess communication such as Hypertext Transfer
Protocol (HTTP), RESTful web services (built on the Representational State
Transfer [REST] architecture), message queues, and the like. What makes
microservices unique from a standard application is that each microservice is
developed, tested, deployed, and scaled on demand and independent of other
microservices.

The microservice concept inherits all the best principles of software
development, including being loosely coupled, scalable on demand, and services
oriented, to name a few.

What does standalone capability mean? It means that each microservice
performs precisely one function, which behaves the same for all consumers.
Take, for instance, an order management service that only processes orders and
does nothing else; it does not even send notifications. It may call another

microservice responsible for sending notifications on processing. This separation
of functions provides enormous flexibility, as each microservice can be
managed, maintained, scaled, extended, reused, and replaced independently of
other microservices.

Given this definition, a microservices-based application is simply a group of
several independent, standalone microservices, each offering specific, well-
defined functionality, communicating through well-defined protocols to provide
overall application functionality. You can describe such a paradigm as a
microservice-based architecture in which each microservice runs as a separate
process.

You may be wondering how this is different from SOA-based monolithic
applications. The difference is that in a monolithic application, all the
capabilities are packed into one big executable, or a WAR file, also known as a
monolithic implementation.

Let’s explore this with a simple example: a calculator application you may
access from the web. In a monolithic application, all calculator operations—
addition, subtraction, and so on—may be written as separate program functions,
and one function may call another function directly to complete its action. There
is one process running, and the communication is through standard program
function calls. The design might look something like Figure 1.1.

+ -

Calc(num1,num2,0p)
Client -

Dutput x o/n

Figure 1.1 Monolithic architecture for a simple calculator application

This is a very simple example for which microservices would be overkill, but
just for the sake of understanding, let’s assume a developer following the
microservices paradigm builds the calculator application by constructing each
operation offered by the calculator as a separate standalone service, as shown in
Figure 1.2. In this case, a microservice calls another microservice through
interprocess calls over HTTP or another protocol. In the previous case, if a nasty
bug is encountered in any of the functions (say, out of range), it could take the
whole application down. With microservices, however, only the impacted
service would go down; the rest would still be available for users.

op(num1,numa2) @ @

Client -« >

Qutput ®

Figure 1.2 Microservices-based architecture for a simple calculator application

The purpose of this simple example is to underscore the biggest advantage of
following the microservices paradigm: that it can simplify the implementation of
a complex application by allowing you to divide the application into
manageable, standalone components. This simplicity can help in various ways,
such as by enabling you to add many capabilities as required without impacting
other services.

Furthermore, each microservice can be independently updated or scaled on
demand. For example, suppose we need to create a new operation that uses an
existing, available functionality: say, finding the square of a given number. This
operation is straightforward and involves minimal to no touching of the existing
code. We create a new microservice that calls the standard published API for the
“multiply” microservice (see Figure 1.3). Consequently, we have only one
microservice to write, compile, and deploy, compared to a monolithic
application’s need for recompilation, redeployment, and so on, with possible
downtime as a result.

ot P op(int,int) ” @ @ @
=t Int ®

Figure 1.3 “Square the number” function easily added with new microservice

We can also have microservices that are called only by other microservices,
not directly by the client application, as shown in Figure 1.4. For example, in the
figure, a client may be able to call only three microservices under Layer 1,
whereas the first microservice under Layer 1 may call the two microservices
behind it under Layers 2 and 3, as shown by the arrows. These two
microservices are called helper microservices.

Layer 1

@ Layer2| [Layer3
NE @

Client i @ @

® P

Figure 1.4 A microservice calling other microservices

The concept of microservices is not new, but it has been gaining popularity
recently because of the challenges posed by monolithic applications.

Let’s look at another example to discuss these challenges. Think about an e-
commerce system and the components it would involve at a high level, as shown
in Figure 1.5.

Load Balancer

; Y

Product Shopping Product Shopping

Catalog Cart Catalog Cart

Payment Search Payment Search
Order User Order User
Mgmt Mgmt Mgmt Mgmt

Figure 1.5 Basic components of a monolithic e-commerce system

For a small- to medium-size company, this system may work well initially.
One package is built and deployed to production by the operations team, and it is
easy to provide horizontal scalability by deploying multiple copies of the
application and putting a load balancer in front of them. As the business grows,
so do the required capabilities, which further extends the code along with the

team size and, in turn, complexity to deploy, release, and support the application.
Over time, the application will become more complex, making it harder to define
the clear ownership of code and functionality to application developers. At that
point, things tend to fall apart and organizations begin to face the following
challenges:

* Performance issues
* Scalability
* Longer cycles for regression testing

 Longer cycles to upgrade and redeployment, leading to an inability to deploy
small fixes and enhancements

* Unscheduled downtime
* Potential downtime during upgrades
» Stuck with the existing technology and programming language

* No way to scale just the required components or functionality

Of the many impacts resulting from these challenges, one that typically goes
unseen is the frustration experienced by engineering teams and the increased rate
of attrition that follows.

In these situations, the microservices paradigm can be very useful. This
paradigm is only useful for large monolithic applications, as it comes with some
costs that may not be worthwhile if the application is small or is supporting
small businesses. It may take lot of investment to decompose the monolithic
application at this point of maturity; organizations usually start developing new
capabilities as microservices and then, based on return on investment, may
slowly start to decompose the old application.

Imagine if we have to update the shopping cart component in the previous
example. Depending on the architecture and legacy of the software, it may
require not only adding or updating the code but also doing the regression testing
on all the code or functions that touch the shopping cart component. It will also
require recompilation, testing, and deployment of the entire application, which
may result in downtime or may slow the application. In addition, say a developer
feels that it would have been easy and efficient if that particular functionality
were coded in some new language such as Scala. That desire will likely remain
unfulfilled unless investment is available to recode the complete application in

that new language. Basically, the application developer is stuck with the choice
his predecessors made, which may have been right at that time but is no longer
optimal.

Let’s see how microservices can help here. As we discussed, we will break all
the major monolithic components into standalone microservices, as shown in
Figure 1.6.

Product Shopping
Catalog Cart Eayment

Order
Mgmt

Figure 1.6 E-commerce system components broken down into standalone
microservices

These microservices are deployed separately, and each performs a single
function. If we want to modify the shopping cart microservice, we have less
code to work with—that is, just this particular microservice—and it will be
much easier to test and deploy. Microservices not only address the challenges
posed by monolithic services but also offer several advantages that drive
organizations toward continuous delivery.

Modular Architecture

If we look at the history of software projects in the entire industry, only 29
percent of large projects were successful within specified cost, time, and quality,
as per chaos manifesto (The Standish Group, “CHAOS Report 2016,” 2016).
That means 71 percent of projects in 2015 failed or were challenged. Failure
may have been due to quality issues, lack of completion, budget overages, and so
on. Consequently, a lot of new practices and software management standards
were put in place that were meant to be followed by software organizations (e.g.,
IEEE Software Engineering Standards, Software Testing Standards). The main

purpose behind these standards was to control the complexity by using best
practices. This helped in two ways: first, by improving the chances of project
completion; second, by increasing the shelf life or age of the application.

Software applications or platforms have an average age of four to six years,
after which they fall into obsolescence due to various reasons. The reasons may
include changing requirements over time, inability to scale due to legacy
architecture, outdated technologies given the pace of change in the technology
world, and so on. The industry tends to get on the Next Gen bandwagon, which
means rewriting the software or platform using the latest technologies, new
architecture, and best practices. But at some point, the question must be asked:
Does it really require changing every component—that is, the complete
package? Not necessarily. Some components or parts may do much better given
the new technologies, but that usually is not an option, as the architecture did not
provide the modularity, enabling us to replace individual software components or
parts with rewritten code.

We have been developing monolithic applications—hence the need to follow
the standards to deal with complexity. If we break down this complexity by
using a microservices paradigm, we will end up with a modular architecture that
significantly increases the shelf life. In addition, we can immediately reduce our
dependence on multiple standards and bulky software development processes to
save time, thus fast-tracking the overall software development lifecycle.

Apart from the process efficiencies, a modular architecture will also create a
lot of savings down the road when we want to upgrade the platform. Instead of
starting from scratch, we can surgically remove the outdated microservices and
replace them with new ones implemented using the right technology and design.
This is one of the key long-term benefits of using the microservices paradigm
and one of the distinct advantages that sets it apart from others. However, in
most cases, gains from the increased modularity alone make a microservices-
based approach worth the investment.

Other Advantages of Microservices

In addition to what we discussed so far, microservices may offer the following
benefits to an organization and its engineers:

* Simplicity. Each microservice performs only one distinct and well-defined
function, so there is less code to take care of, less cohesion and dependency
within the code, and a lower probability of bugs.

* Scalability. To scale a monolithic application, we need to deploy resource-
heavy applications on multiple servers behind a load balancer. It is not
possible to scale just a portion of an application; it is all or nothing. With
microservices, we can scale out only the components that are expected to be
highly loaded, as shown in Figure 1.7. Providing differentiated levels of
scalability is very easy and a salient feature of microservices.

Monolithic Microservices

!
I
I
1
1
I
|
| | Load Balancer Load Balancer
Load Balancer i
V[~
b] [[=
1 . - N r L -
i s ||
I
| | Load Balancer Load Balancer
X %||X %X %|i @3 :
o o O 1 [Eegal e
0.910.9 (%
i Wl T ek N
I
I =,‘X,'

Figure 1.7 Scalability comparison

» Continuous delivery. Because of fewer interdependencies within the code
bases and faster development cycles, the microservices paradigm enables and
actually lends itself to a culture of continuous delivery and DevOps.

* More freedom and fewer dependencies. Microservices are meant to be
standalone and independent. A development team can focus on its
microservice and freely enhance functionality without worrying about
breaking another microservice as long as they keep the interface contract
intact or implement a new contract that is backward compatible.

* Fault isolation. Fault isolation is a phenomenon in which a fault in one part
of a system does not bring down the entire system. That is, the fault is
isolated from the entire system. In a monolithic application, a fault in any
part of the system will bring down the entire system, as the system is a single
executable/process. With microservices, a fault in one microservice may
bring down the impacted microservice, but it will not necessarily bring down

the entire application because the affected microservice is running in its own
process space. For example, in an e-commerce system based on
microservices architecture, if the product review microservice crashes, users
will still be able to see inventory, select items, view cart, and place an order.
However, they will not be able to see reviews until the reviews microservice
issue is resolved. If the same application were monolithic, the review service
issue would possibly shut down the entire application.

* Data segregation and decentralization. Unlike monolithic applications,

where all the data typically is stored and shared in a central database,
microservices provide us an opportunity to segregate this data. Each
microservice usually owns its data and does not share its data directly with
other microservices.

* Choices. Unlike a monolithic application, where all application components
have to use a single database, platform, and programming language,
microservices-based applications offer the opportunity to use the best tool for
each specific job. One microservice might use Oracle with Linux OS, and
another might use a NoSQL database on a Microsoft platform. Long-term
commitment to technology stacks is no longer necessary.

Disadvantages of Microservices

Nothing comes for free; there has to be some cost in achieving all the benefits
offered by microservices. If we move toward microservices, we need to be aware
of the challenges posed by such an architecture. Not to worry, though. In the next
part of this book, we learn about how to use certain systems and applications to
overcome these challenges. For now, let’s list some of the challenges posed by
microservices:

 Troubleshooting complexity. Microservices provide the overall capabilities
through inter-microservices communication, which increases potential points
of failure. This makes answering questions such as the following more
challenging:

* Is my system healthy at any given instance?

 If an end user reports a problem such as slow performance or timeouts,
where do I start my troubleshooting?

* In a monolithic application, it is easier to trace a request end to end.
However, in a microservices-based application, each end user request might

be broken down into multiple requests and might be hitting multiple
microservices to get a response. Troubleshooting can become a little tricky.

* Increased latency. Intraprocess communication (like the kind used in
monolithic applications) is much faster than the interprocess communication
used by microservices.

* Operational complexity. With several hundreds to thousands of
microservices in a real-world application, operations teams have to deal with
complex infrastructure, deployment, monitoring, availability, backups, and
management. In a way, we are moving the complexities of a monolithic
architecture to the systems side of microservices. Still, this complexity can be
addressed by a high level of automation.

* Version control. Because a microservices-based application may have
thousands of microservices, the versioning and management becomes little
complex. It requires better version control and management systems.

Chapter 2
Switching to Microservices

Chapter 1, “An Introduction to Microservices,” compared and contrasted
microservices with monolithic architectures. Now that you understand the
distinction between the two, you are probably trying to answer the question, are
microservices right for my team? If you are already dealing with the growing
pains of monolithic architecture or are planning to build a monolithic system,
then it is worthwhile to look at microservices. Otherwise, there is no reason to
switch to this architecture, as it is not suitable for small-to-medium service
architectures given the work involved. Each microservice comes with a burden
of extra work at a scale that is unnecessary with monolithic architectures: API
sets, process monitoring, load balancing for performance/high availability, and
so on, are required for each microservice rather than just at the application level.
You are actually trading monolithic code complexity for the operational
complexity of microservices, and if that complexity does not exist in your
system, you will unnecessarily add it. For those reasons, you have to be very
careful when it comes to moving forward with this paradigm, or it can backfire.

This chapter lays out the criteria that qualify (and disqualify) various
applications for a microservices-based architecture. Usually, executives and
managers look for potential business cases or return on investment. We discuss
these considerations briefly by doing some simple cost—benefit modeling and
organization investments.

Fatigues and Attributes

A switch to microservices may best be suited for existing monolithic
applications architectures that show some of the following fatigues:

» Difficult and time-consuming deployment process
* Large and complex code base that overloads developer IDEs

* Non-uniform scaling requirements (i.e., some capabilities require more
scaling than others)

* High costs of development, testing, and deployments

* Degraded code quality over time because of too many interdependencies

* Application failure due to single component failure

Perform thorough due diligence to understand these fatigues and document
them clearly. Then, try to determine whether some of the following
characteristics would add value to your current application:

» Services organized around business capabilities
» Standalone and/or partial deployment of services
* Asynchronous communication

» Replacing different platform components, programming languages, and/or
databases for different parts of the application services for enhanced
performance

« Continuous deployment and continuous integration

* Each engineering team owning and understanding specific business areas
such as order management or a shopping cart

Thinking in these terms will give you a pretty good idea of where you stand
and whether it makes sense to transition to a microservices paradigm. Once
considerable effort has been put into adopting the microservices-based paradigm,
there is no turning back. So before you decide, you must also be aware of the
unique needs that are put on the organization due to this shift:

* Culture change. The organization mindset must embrace a shift in the roles
of engineering teams—from functional roles to business-centric roles with
shared goals and responsibilities. This means creating joint teams of product
managers, developers, testers, and operations to lead collectively and take
ownership of the microservices. It also requires investments in fresh talent
and in training existing staff, as well as in new systems, tools, and software.
In addition, a great deal of automation throughout the software lifecycle is
required to ensure success.

» Operational processes. With a microservices paradigm, an organization’s
operational processes and structure need to be changed. The paradigm
demands a more cross-functional structure that takes charge of deployment,
support, upgrade, and operation of microservices. The existing operational
processes of testing and deploying the monolithic application have to be

broken down into multiple and extensive processes supporting hundreds or
thousands of self-sufficient microservices and supporting communication
between them.

Learning Curve for the Organization

There is a whole new learning curve for existing engineering and operational
teams who have been working with and supporting the various aspects of
monolithic architecture-based applications. This learning curve can be defined
by the following new practices required to make the shift toward microservices-
based applications:

» Standalone microservices. Monolithic applications exist as one large unit
deployed on multiple boxes for scalability. With microservices, there are
hundreds to thousands of self-contained services, all requiring equal
attention.

* Microservices discovery. The higher the number of microservices, the more
complexity we encounter. For example, we need to think about how the
microservices will be discovered—that is, how and where do we create the
inventory of microservices? Other challenges include on-demand scalability
and version control, including retiring services that are no longer needed. The
good news is that various applications, such as Consul, Apache ZooKeeper,
and other third-party products, can be used to solve these challenges. These
challenges create a need to hire new staff or retrain existing employees,
which may take a good part of the investment.

« Communication between microservices. Determining how communication
will occur between all the services and the outside world includes
considering client expectations around response time, latency, number of
retries, and so on, as well as what happens when these service level
agreements (SLAs) or expectations are not met. It is possible that a standard
interface for communication needs to be established.

» Microservices testing. Testing practices and principles of monolithic
applications are not applicable to microservices-based applications. While
testing each self-sufficient microservice is easy, the challenge comes with
testing the complete application that is composed of hundreds or thousands of
microservices. This requires dealing with lots of moving parts, and
integration testing becomes the most important aspect of the overall testing.
Some of the testing complexities can be addressed by establishing best

practices and automating the test cases.

* Scaling of microservices. With microservices, scaling becomes easier and
efficient. You can scale up or down the services you need on demand. But it
does come at some cost. First, the microservices must be designed to keep
scaling needs in mind—that is, know the usage demand for each
microservice. Second, scaling must be automated, which requires some
investment and learning curve with frameworks such as Mesos and
Marathon. We discuss these frameworks in detail in the later chapters.

» Microservices upgrading. On the surface, it may sound simple to upgrade
every microservice, since each is self-sufficient and consequently should not
cause any disruption. It may actually be simple if the new version
incorporates simple changes that do not impact the outside world. But when
changes impact other dependent services, upgrading may not be that
straightforward. It must be ensured that other services are up to speed to
consume new functionality or that the new service is backward compatible.

* Microservices security. Security has always been important, and given
today’s cybersecurity threats, it has become especially crucial to
acknowledge security during design time. A few aspects that need to be dealt
with include microservice-to-microservice security, client-to-microservice
security, data-in-motion, and data-at-rest security. Several standards, such as
OAuth and OpenlD, are available to address some aspects of security, but
others must be thought through to balance the security needs with ease of
consumption.

* Microservices management. No matter which software architecture or
paradigm is in place, application management is a key requirement for
overall operational and support success. Managing microservices is more
complex than managing a monolithic application. The existing monitoring
and managing tools or practices may not be that helpful. Instead of a handful
of servers and applications, we have to deal with more complex new systems
and technologies such as containers. Therefore, a single pane of glass (i.e., a
single interface) to configure, monitor, and diagnose may be very helpful.

* Monitoring in microservices. With hundreds to thousands of microservices
spread out over distributed systems, there are going to be lot of moving parts.
Proper checks and balances must be put in place, both in the infrastructure
(CPU, memory, I/0O performance) and granularly at the application level
(application log files, API call performance). The data extracted from this

level of monitoring should be easily and readily available for operations and
engineering teams to act with and improve the services.

 Configuring microservices. For any service, there are various configuration

options provided by developers that provide flexibility in production and
make it easy to adjust the services depending on the conditions. Such
configuration includes settings such as caching, scaling parameters, thread
counts, application feature—specific flags, database connections, and so on.
Managing these aspects for thousands of services may well be a cumbersome
task. A lot of tools exist to address some of these concerns, so a right
combination of tool sets must be selected to create a common interface for
simplicity.

 Failure handling in microservices. When a microservice fails, the check
and balances discussed in the previous bullets may help, but the system needs
to be designed keeping in mind that failure is inevitable. Each microservice
should be built in such a way that a failure in a dependent service should not
cause any issues with the performance of its own service, let alone bring the
entire system down. The overall intention should be to build toward self-
healing systems.

In light of all this information, the organization must be fully prepared for this
change and able to allocate the proper resources to make the transition
successful. A decision should be made only after all of these concerns are
weighed. It is recommended to create a gap list to easily convey and understand
the level of investment required to move to a microservices paradigm.

Business Case for Microservices

Given all the issues we have discussed so far, it may be difficult to understand
and build the business case for microservices. You may be thinking, if it is more
complex to build and maintain microservices-based applications, why should
you invest in doing so? It is certainly going to be more complex, and the initial
effort may be very high to train existing staff and change the organization
culture, yet the long-term benefits would not only outweigh initial investment
but also create savings and other advantages in the long run. What you need is a
very basic analysis to help you understand or build the business case for the
organization.

The average life of a software platform built on monolithic architecture is
typically 4 to 5 years and is based on the following factors:

» Changing needs and customer demands driving existing functionality out of
date

* New business needs

* Lack of flexibility to adjust or change existing architecture
* Lack of scale

* Outdated technologies

* Slowness caused by outdated systems and increased traffic over time

When faced with these factors, organizations start looking at new technologies
and generally decide to invest in a new or next-generation platform. This is
called the platform refresh cycle. From a business perspective, all the changes
required are fair because customer expectations and delivery models change over
time. What organizations worry about is the high investment in each cycle in
terms of both dollars and time. The worry is fair, as it impacts the bottom-line
profits of any organization. That’s where microservices can help. Let’s do a
high-level analysis to prove this point.

Cost Components

Let’s use a hypothetical example to look into the cost components of a
monolithic platform’s lifecycle:

* Cost to build. Cost to build a software platform from scratch that includes
all the phases of the software development lifecycle, such as analysis, design,
development, testing, and release. This is going to be the biggest investment
of the cycle. Let’s call this cost M-rg.

* Cost to maintain. Normal care and feeding of the software platform, such as
applying OS-level patches and maintaining infrastructure. Let’s call this cost

Mcrum-

* Cost to change/update. Cost of adding new features, bug fixing, retesting,
regression testing, and releasing over the lifecycle of the project. Let’s call
this cost Mcry-

 Cost to scale. Cost to appropriately scale the platform to maintain system
response time and performance over time as the user base increases. Let’s
call this cost Mrs.

» Time to market. Time taken to build the software platform or a given
update. Time between analysis and release on the platform or an update. Let’s
call this cost M-

For comparison purposes, let’s assume the following costs for the same
software built using microservices architecture since these costs will be
different:

* Cost to build: S-1p

* Cost to maintain: Sy,

* Cost to change/update: Sy
* Cost to scale: S-1g

 Time to market: Sty

So, which platform architecture is more cost effective? Let’s compare
monolithic and microservices based on each of the preceding variables.

* Cost to build: Mg < Scyg. If you already have an application in place,

you have to account for all the new investment that may be required, such as
training the staff, changing the culture, hiring new talent, and updating tools
and systems. Given these considerations, the cost to build a microservices-
based application may be very high compared to building a monolithic one.
By contrast, if you are starting a brand-new software project, then the costs
may not differ much depending on current organizational capabilities. Given
system and tool needs, the cost of building a monolithic application may still
be lower but not by a lot.

* Cost to maintain: Mcry > Scrme Maintaining hardware and applying

patches may cost downtime in certain conditions. There are lots of open
source technologies that enable all kinds of automations from deployment to
fault isolation. We cover many of these tools later in the book. For example,
containerizing microservices and moving toward DevOps would enable
spinning up new service containers on demand, which can save a lot of IT
time and create efficient resource utilization, hence bringing down the overall
cost of maintenance while reducing the possibility of downtime.

* Cost to change/update: Mty > Scty. One of the key advantages of using

the microservices paradigm is that updating an existing functionality
(microservice) or adding a new one is quite simple compared to dealing with
complexity of a monolithic project where you might need to rebuild the entire
application. The key differentiation is the time and effort it takes to update,
build, test, and deploy a microservice that performs just one function versus a
complete monolithic application, which may take hours just to build and is
very prone to human errors. Also, when you compare the testing and
deployment efforts, microservices would be shorter and quicker, as discussed
earlier, than monolithic applications, which in some cases may require
downtime.

* Cost to scale: Mtg > Scrs. Scaling on demand and only where needed is a

key value provided by microservices as compared to a monolithic application
that requires spinning up another instance of the whole application. Unlike
with a monolithic application, you could scale up only the components
(microservices) that show signs of stress by spinning up service containers
automatically and similarly destroy these containers when service demand
goes down. This approach saves not only effort but also hardware/software
resources, as shown in Figure 2.1.

Monolithic Microservices
Helpdesk Application
Load Balancer !
APl Gateway
' v
Helpdesk || Helpdesk || Helpdesk Load Balancer v v
Application) fApplication| | Application Ticketing Ticketing Search Catalog
Microservice || Microservice Microservice || Microservice
1 Ticketing
1 | | Microservice
)

Figure 2.1 Scaling comparison

* Time to market: My > Sypye There are two ways to look at time to

market. First, adding a new service and going live in production is, in most
cases, much faster than updating a monolithic application. Second, given the
modular architecture of the microservices paradigm, it, along with containers,
enables another software delivery method that organizations have been
struggling with called DevOps. In fact, microservices and containers are key

for the success of DevOps. DevOps provides the four key ingredients
required to run a successful software platform:

* Speed

» Stability

* Performance
* Collaboration

DevOps enables agility and hence time to market. Organizations strive to
take their offering quickly to market to maintain a competitive edge. Quick
time to market itself may be the highest payback for transitioning to a
microservices paradigm.

* Future refresh cycles. As discussed, a monolithic architecture—based
software application has a finite average lifetime. Once that lifetime ends, the
organization usually begins a new cycle, which ends up costing it an initial
Mctg again, and so on. But microservices actually break this whole concept

of cycles because they can do the following:

* Provide flexibility to add or remove microservices according to business
requirements, which should be straightforward given the modular
architecture.

» Upscale or downscale the system on demand by adding and removing
services under load balancer.

* Replace outdated technologies per microservice as required, which
minimizes the cost.

Given all the flexibility provided by the microservices paradigm, new
business requirements can be accommodated as required, and systems can be
kept up to speed with changing business needs. Hence, there will be no need
to replace the entire platform with a new generation for quite a few years, if
not ever.

Keeping all the costs in mind, the net costs for microservices-based
architecture will surely come to much less than total costs for a monolithic
architecture. Spending over time may look something like that shown in Figure
2.2, with the net cost much lower for microservices. The intersection point of the
two costs really depends on the project type, scope, and size.

>

Microservices

Monolithic

Cost to Build and Maintain

>

Software Platform Size and Complexity

Figure 2.2 A simplified graphical representation of this cost comparison

To conclude the business case, the net benefit in terms of cost savings will
come with microservices, but it happens over time. It does require the initial
investment and organizational buy in. As noted earlier, the mere gain in time to
market may outweigh all other benefits for most organizations.

An organization must consider the advantages, the learning curve involved,
and the cost—benefit analysis when deciding whether to invest in a
microservices-based architecture.

Chapter 3

Interprocess Communication

In monolithic architectures, the communication within the components happens
via function, method, or module calls and is very straightforward in most cases.
When building microservices architecture, designing and implementing
interprocess communication is more complex. Although there are proven
techniques for managing interprocess communication in a microservices
architecture, and it is not a key subject of this book, in this chapter we review
some of the best practices.

Types of Interactions

Microservices typically expose their functionalities through APIs or web
services. To consume the web services over the network, there are fundamentally
two types of communication/interaction patterns.

* Synchronous communication. An interaction in which the client expects
immediate response while blocking everything else (e.g.,, HTTP
request/response).

* Asynchronous communication. An interaction in which the service
response is not expected immediately. The client makes the service call and
continues with its work. Examples include publish/subscribe and HTTP
request/asynchronous response.

As we discussed in Chapter 1, “An Introduction to Microservices,”
asynchronous communication is the preferred method of interaction between
microservices. Think what would happen if we were to use synchronous
communication between microservices. The client would be blocked until it
received a response by another service before continuing its work. What would
happen if the service were down or has error? This approach would not scale
very well, and we would lose most of the advantages of microservices.
Therefore, asynchronous communication is the better alternative.

With asynchronous communication, the client makes the request to another

microservice and continues with other work while listening for incoming
responses through the listener thread. The listener thread processes the responses
as and when they come in. Problems within the called microservice would have
no impact on the client. The result is improved scalability with loosely coupled
services.

Another approach is to use publish/subscribe, where the publisher publishes
the messages on, say, a message bus such as Kafka. Subscribers register for
messages that are of interest on the message bus and pick those up for processing
while ignoring the rest. Once processed, they may publish the results, which may
be picked up by the original publisher, depending on the message exchange
patterns in use.

Preparing to Write Web Services

Overall, developers have to decide three things when preparing to write web
services:

1. Protocol. When it comes to web services protocols, we all know that HTTP
is the gold standard. It is the same protocol used by web browsers, so it has
withstood the test of time. The biggest advantage is that it is very light and
based on a simple request/response model in which the client forms and
sends an HTTP request and the server executes the actions required and
forms and sends back an HTTP response.

2. Web service standard. There are three primary choices:
* RESTful is widely accepted and recommended.

 SOAP is bulky enough that it requires client- and server-side
implementation.

* Data is an open protocol used for building and consuming RESTful APIs.

RESTful is based on HTTP request and response. It is much lighter than
SOAP, and that’s where it wins. Also, RESTful services are stateless and
cacheable, which makes them faster—crucial in supporting mobile requests.

3. Message format. There are plenty of commonly used and entirely
acceptable message formats to choose from, including XML, RSS, and
JSON. A favorite of many developers, however, is JSON, primarily because
it is text based and human readable, and there are a variety of libraries that
can easily convert JSON to objects and back to the textual representation.
Because JSON does not suffer the overburden of syntax, JSON data is

smaller than XML data. This means faster processing, since it takes less
bandwidth to send and receive messages. JSON works especially well for
handheld and mobile devices such as cell phones and tablets, which have
limited storage, light computing, and low bandwidth requirements to
transmit the messages over the web.

Different people have different needs and preferences, so what we present in
this chapter are just recommendations. Make your own choices according to
your needs, performance requirements, and comfort level.

Microservice Maintenance

Once you build the communications between microservices, you need to keep
them up to date and maintain them. The broadly applied adage, “change is
constant,” is applicable to your software also. Requests to adjust existing
functionality will always accompany new requirements that pour in, in some
cases necessitating changes to these web services. That is one complexity of
microservices, as we have already discussed. Here are some things that will need
to be taken care of to address the changing needs:

 Supporting existing client implementations. There may be times when you
have to update the interfaces as you modify the core functionality of your
microservice. You must take care of backward compatibility of your micro-
service because chances are that one or more other microservices
(consumers) are making use of this published interface for communication.
So you have to make sure you still support the old version until the consumer
microservices team changes its implementation to consume your new
interface.

+ Failsafe design. If a called web service is down, you can address it in few
ways, but the simplest is to add timeout in your client code. On the provider
side, cover the error cases by returning proper error codes or, in some cases,
default values. This practice also improves troubleshooting efforts.

* Monitoring. Proactively monitor microservices by calling each at regular
intervals or through other methods. Take appropriate action if any of the
microservices is down. You may have to create a fine balance, as monitoring
calls cause extra traffic. You can use frameworks such as Marathon to
achieve availability, orchestration, and the like. If, for instance, you want two
microservices instances to be running and one goes down, Marathon has the

heartbeat mechanism to detect it and will spin up another web server
instance.

* Queue. Use the publish/subscribe method when building asynchronous web
services. The advantage is that even when the service goes down, it will pick
up the request from the bus when it comes back up.

When we convert a monolithic application to a microservices architecture, it
results in several hundreds of microservices and thousands of web services or
messaging services for communication between these microservices, so
following the best practices in these areas are paramount.

Discovery Service

What happens when you have hundreds or thousands of microservices? In
addition, perhaps you may have to provide multiple web services per
microservice even for same function—for example, a different client-based web
service. This is not a big issue in a monolithic architecture, since the client will
make one call and the rest will be taken care of by the application. But in
microservices-based architectures, two big issues arise:

 Clients have to call multiple services at same time to achieve the same
functionality that they previously got with just one call in a monolithic
application.

 Clients will have to know the location of the services.

Let’s illustrate with an example. Say a user is accessing a library management
application and wants to review his account page. The account page shows the
book checkout history, recommendations, current cart, payments, account
settings, and so on. If the application is based on a monolithic architecture, when
the user clicks My Account, the service call shows him the My Account page
while, in the backend, the application does the magic by calling various
functions and looking up the database. For handheld and mobile devices, a
different set or subset of calls may be required given the real estate and
processing power, which adds to the complexity.

With a microservices-based architecture, a client would be responsible for
calling all the required microservices, such as the checkout cart, payment
information, and account settings. This approach would be very inefficient and
would result in a rigid, or “hardcoded,” way of doing things. We would lose the

flexibility to make changes such as further dividing a microservice into multiple
microservices when required, or vice versa.

In addition, the client would have to know the location of all the microservices
that need to be called for the My Account page. We therefore need a system that
would act as the overall entry point for the clients and the external calls and
another system that stores the up-to-date locations of the microservices.

API Gateway

An API gateway addresses the first problem and will act as an entry point for all
the calls. It is responsible for receiving the client requests, calling all the
required microservices and sending back the aggregated results from
microservices to complete the client request. With an API gateway, the client
makes only a single call to invoke the service. This model offers various
advantages:

 Internal complexity of the application is hidden from the client, thus
simplifying the client code.

* It provides more flexibility for changing, combining, dividing, adding, or
removing microservices as required.

* It reduces the round trips between client and application, hence increasing
efficiency.

The API gateway can also serve as a point for load balancing, authentication,
monitoring, and management. It may provide different APIs for different clients,
such as web and mobile, and may prioritize the requests.

The biggest drawback of this model is that API gateway can become a single
point of failure and a bottleneck from both a performance and a development
perspective. Understand that this API gateway has to be customized, configured
and maintained by multiple teams, so the process must be efficient and
lightweight. For example, it must be kept up to date as we modify, add, or delete
the microservices. From an operational performance perspective, an elastic load
balancer would make sure performance and availability metrics are met.

Service Registry

With thousands of microservices in place, our API gateway also needs to know
locations such as the IP addresses of all the services so that it can do its job. The
idea behind service registry is that it provides a database of all the microservices

and their locations, and the database can be queried when required. The
microservice developer needs to take care of creating and maintaining a service
registry.

The logic should be such that when a microservice comes up, it registers itself
with this service registry. When a client makes a call, the API gateway looks up
the location of the required microservices, makes those calls, and aggregates the
results to complete the client request. At a high level, this is what is required, but
as we know, things are not that simple.

What if we lose the registry data? To solve this problem, we have several open
source tools, such as Consul and SkyDNS, that actually discover the
microservices and make sure they are up and running. For example, Consul is a
matured discovery tool that can use custom DNS names to access the
microservices and store this information in the registry. It can also perform
constant health checks and keep the clusters healthy.

Putting It All Together

Let’s look at a simple system and then extend it on the basis of what we have
learned. Figure 3.1 shows a simple microservices-based model. At this point, the
client is responsible for calling all the microservices to complete the user

request.
@ N\
D@
Client Service > @

Account = call uS e @
a,bd efxy =

Checkout = call pS @

a1 b! CP IP mr x1 y

Figure 3.1 Simple model in which client is responsible for calling each
microservice

Let’s add an API gateway to encapsulate all the business logic of the

application and hide the complexity from the client service. This makes the
client much simpler by enabling a single call to get the job done, as seen in

@
\‘®—*®

Client Service ——»

API| Gateway
Y

Services offered

()

- Account

- Checkout
Business Logic @
Account = call pS
a,bdefxy

Checkout = call pS
a,bclmxy

Figure 3.2 Microservices-based model with API gateway added, enabling a
single call to get the job done

Now let’s add a service registry so that the API gateway can query it to know
the location of each microservice, as required. As we discussed, all the
microservices (a to z and 1 through 3 in the figures) register with a registry
service and API gateway. When a new request comes in, the API gateway
figures out what microservices need to be called. It then queries for their location
from the registry service and makes the calls. Furthermore, it aggregates the
results and sends the HTTP response back to the client. See Figure 3.3.

us IP Address
210.19.230.10
210.19.230.12

rit i > Reqgistry Service

A A
|
I
I

—————

NG

I
I
I
I
-

3 210.19.230.38

(:9

Client Service ——>»

A
1
1
1
1
1
1
1
1
]
1
1
1
1
1

Services offered
- Account
- Checkout

B ©

API Gateway
i -
L4
o--© @ -

Business Logic
Account = call pS
a,b,defxy

Checkout = call pS B - Query Location

a,belmxy
——————— -» Register Location

Figure 3.3 Microservices-based model with registry service incorporated

This looks a little complex but is really straightforward. Let’s take it a step
further and try to scale our individual services, as one of the key advantages of
microservices is the ability to scale to accommodate the usage. All that is needed
is an additional load balancer where required. Load balancing should be done at
the microservices level, which is critical for scalability, and also at the API
gateway and service registry levels, as they can become bottlenecks. A model
like the one depicted in Figure 3.4 would make sense.

[o

—g &> Registry Service uS | IP Address
% § 210.19.230.10
wd 210.19.230.12

A A A
:
I
I

——————e

| |
I]
I 1
: @ 3
=
g \ L 1 3 [210.19.230.38
o8 \ Y
[= > 1585 | = T -
o} ; &g : :
S B i (W | r
Client Service —» o §—>— m — > @ .
W o 0} : i \E
LN DNTR PO
Services offered | 3 < = . . = 8/
- Account =8 1 e 2 5N
AN T
- Checkout @ % os
Business Logic W @ ' :
Account = call uS
a,bdefxy @
Checkout=callps —Tmm - Query Location

ab,ecl,mxy
________ > Register Location

Figure 3.4 Microservices-based model with additional load balancer

We learn more about scaling microservices-based applications in Part III,
“Hands-On Project—Putting Learning into Practice,” where you will see a
hands-on example with Docker.

Chapter 4

Migrating and Implementing
Microservices

By this point you know what microservices are and how they work. If you’re
still reading, I have accomplished my first goal: piquing your interest enough
that you are considering implementing microservices yourself! Now it’s time to
get down to brass tacks: namely, the very critical topic of how to approach the
transition to microservices.

The Need for Transition

You’ll recall that a monolithic application is very large (in terms of lines of code
[LoC]) and complex (in terms of functions interdependencies, data, etc.), serving
hundreds of thousands of users across geographical regions and requiring several
developers and IT engineers. A monolithic app may look something like Figure
4.1.

>100K LoC

40+ Developers

Global Users

ﬂ >100K + User

Figure 4.1 Basic structure of a monolithic app

Sometimes, even with all these characteristics, the application might run fine at
first. You may not encounter challenges in terms of application scalability or
performance. But with time and usage, issues will arise, and they may be
different for different applications. For example, for a cloud or web application,
you may hit scalability issues due to more users consuming your services, or it
may become costly and hard to release regular new updates due to longer build
times and regression testing. As shown in Figure 4.2, monolithic application
users or the developers may experience one or more issues listed on the right.

Scalability —

>100K LoC Support more users

Performance —
Standard response time
across geography

40+ Developers

Maintenance —

Cost and resources
Global Users Agility —
+ Speed of development
E and deployment

Technology Freedom
>100K + User Flexibility to use open
source components, efc.

Figure 4.2 Potential issues with a monolithic app

That’s when a migration to microservices may start sounding like more than a
trendy idea; it will sound like a lifesaver. We already learned a bit about
microservices in previous chapters, so we know our transition will look
something like the application shown in Figure 4.3.

L] N

Service n+1

$

-
e

In-Memory
Database

w

Figure 4.3 Transition from monolithic to microservices

So, how do we go about making such a change? There are two possible
scenarios: creating a brand-new application or converting or migrating a
monolithic application that already exists. The latter scenario is far more likely,
but it is worth knowing the ins and outs of both scenarios regardless of the
current situation.

Creating a New Application with Microservices

Before we begin, let me say that I have not seen many real-world scenarios of
building a microservices-based application from scratch. Typically, an
application is already in place, and most applications I have worked on are more
of a transition to a microservices architecture from a monolithic architecture. In
these cases, the intention of architects and developers has always been to reuse
some of the existing implementation. As skills become readily available in the
market and some successful implementations are published, we will see more
examples of building microservices-based applications from scratch, so it is
certainly worthwhile to discuss this scenario.

Let’s say you have all the requirements figured out and ready to go into the
architecture design of the application you are going to build. There are many
common best practices you need to think about as you get started, which are
covered in the following sections.

Organization Readiness

As we discussed in Chapter 2, “Switching to Microservices,” the first question
you have to ask yourself is whether your organization is ready to transition to
microservices. That means the various departments of your organization now
need to think differently about building and releasing software in the following
ways:

» Team structure. The monolithic application team (if one exists) needs to be
broken down into several small high-performance teams aware of or trained
in microservices best practices. As you saw in Figure 4.3, the new system
will consist of a set of independent services, each responsible for offering a
specific service. This is one key advantage of the microservices paradigm—it
reduces the communication overheads, including those multiple nonstop
meetings. Teams should be organized by business problems or areas they are
trying to address. The communication then becomes about the timing and set
of standards/ protocols to follow so that these microservices can work with
each other as one platform.

» Agility. Each team must be prepared to function independently of others.
They should be the size of a standard scrum team; otherwise, communication
will become an issue again. Execution is the key, and each team should be
able to address the changing business needs.

* Tools and training. One of the key needs is the organization’s readiness to
invest in new tools and people training. The existing tools and processes, in
most cases, would need to be retired and new ones picked up. This will
require a large capital investment as well as investment in hiring people with
new skills and retraining existing staff members. In the long term, if the
decision is right to get on microservices, organizations will see savings and
recoup the investment.

Services-Based Approach

Unlike with monolithic applications, with microservices you need to take a self-
sustained services-based approach. Think of your application as a bunch of
loosely coupled services that communicate with each other to provide complete
application functionality. Each service must be thought of as an independent,
self-contained service with its own lifecycle that can be developed and
maintained by independent teams. These teams may select from a variety of
technologies, including languages or databases that best suit their services’

needs. For example, for an e-commerce site, the team would write a completely
independent service, such as a shopping cart microservice, with an in-memory
database, and another one, such as an ordering microservice, with a relational
database. A real-world application may employ microservices for basic functions
such as authentication, account, user registration, and notification with the
business logic encapsulated in an API gateway that calls these microservices
based on the client and external requests.

Just a reminder: a microservice may be a small service implemented by a
single developer or a complex service requiring a few developers. With
microservices, the size does not matter; it all depends on one function that a
service has to provide.

Other aspects that must be considered at this point are scaling, performance,
and security. Scaling needs can be different and provided on an as-needed basis
at each microservice level. Security should be thought of at all levels, including
data at rest, interprocess communication, data at motion, and so on.

Interprocess (Service-to-Service) Communication

We discussed the topic of interprocess communication in depth in Chapter 3,
“Interprocess Communication.” Key aspects that must be thought of are security
and communication protocol. Asynchronous communication is the way to go, as
it keeps all requests on track and does not hold resources for extended periods of
time.

Using a message bus such as RabbitM(Q may prove to be beneficial for this
kind of communication. It is simple and can scale to hundreds of thousands of
messages per second. To prevent the messaging system from becoming a single
point of failure if it goes down, the messaging bus must be properly designed for
high availability. Other options include ActiveMQ, which is another lightweight
messaging platform.

Security is key at this stage. In addition to selecting the right communication
protocol, industry standard tools such as AppDynamics may be used to monitor
and benchmark the interprocess communication. Any anomalies must be
reported automatically to the security team.

When there are thousands of microservices, it does become complex to handle
everything. We already discussed how to address such issues through discovery
services and API gateways in Chapter 3.

Technology Selection

The biggest advantage of transitioning to microservices is that it enables choices.
Each team can independently select the language, technology, database, and so
on, that is the best fit for the given microservice. Usually in a monolithic
approach, the team does not have this flexibility, so make sure you do not
overlook and miss the opportunity.

Even if a team is handling multiple microservices, each microservice must be
looked at as a self-contained service, and it needs be analyzed. Scalability,
deployment, build time, integrations and plugins operability, and so on, must be
kept in mind when choosing the technology for each microservice. For
microservices with lighter data but faster access, an in-memory database may be
most suitable, whereas others may share the same relational or NoSQL
databases.

Implementation

Implementation is the critical phase; this is where all the training and best
practices knowledge comes in handy. Some of the critical aspects to keep in
mind include the following:

* Independency. Each microservice should be highly autonomous with its
own lifecycle and treated as such. It needs to be developed and maintained
without any dependencies on other microservices.

* Source control. A proper version control system must be put at place, and
each microservice must follow the standards. Standardizing on a repository is
also helpful, as it ensures all the teams use the same source control. It helps
in various aspects, such as code review, providing easy access to all the code
in one place. In the long term, it makes sense to have all the services on the
same source control.

» Environments. All different environments, such as dev, test, stage, and
production, must be properly secured and automated. The automation here
includes the build process—that way the code can be integrated as required,
mostly on a daily basis. There are several tools available, and Jenkins is
widely used. Jenkins is an open source tool that helps automate the software
build and release process including continuous integration and continuous
delivery.

» Failsafe. Things can go wrong, and software failure is inevitable. Handling
failures of downstream services must be addressed within the microservice
development. Failure of other services must be graceful to the extent that the

failure should be invisible to the end user. This includes managing service
response times (timeouts), handling API changes for downstream services,
and limiting the number of auto-retry.

* Reuse. With microservices, don’t be shy about reusing the code by using
copy and paste, but do it within limits. This may cause some code
duplication, but it’s better than using shared code that may end up coupling
services. In microservices, we want decoupling, not tight coupling. For
example, you will write code to consume the output response from a service.
You can copy this code every time you call the same service from any client.
Another way to reuse code is by creating common libraries. Multiple clients
can use the same library, but then each client should be responsible for
maintaining its libraries. It can sometimes become challenging when you
create too many libraries and each client is maintaining a different version. In
that case, you may have to include multiple versions of same library, and the
build process may become difficult due to backward compatibility and
similar concerns. Depending on your needs, you can go either way as long as
you can control the number of libraries and versions by clients and put a tight
process around them. This will certainly save you from lot of code
duplication.

» Tagging. Given the sheer number of microservices, debugging a problem
may become difficult, so you need to do some kind of instrumentation at this
stage. One of the best practices is to tag each request with a unique request
ID and log each one of them. This unique ID will identify the originating
request and should be passed by each service to any downstream requests.
When you see issues, you can clearly track back through logs and identify the
problematic service. This solution will be most effective if you establish a
centralized logging system. All the services should log in all the messages to
this shared system in a standardized format so that teams can replay the
events as required all from one place, from infrastructure to application. A
shared library for centralized logging is worth looking into, as we previously
discussed. There are several log management and aggregation tools out there
in the market, such as ELK (Elasticsearch, Logstash, Kibana) and Splunk,
that are ideal.

Deployment

Automation is the key during deployment. Without it, success with a
microservices paradigm would be almost impossible. As we discussed, there

may be hundreds to thousands of microservices, and for the agile delivery,
automation is a must.

Think of deploying thousands of microservices and maintaining them. What
happens when one of the microservices goes down? How do you know which
machine has enough resources to run your microservices? It becomes very
complicated to manage this without automation in place. Various tools, such as
Kubernetes and Docker Swarm, can be used to automate the deployment
process. Given the importance of this topic, a whole chapter, Chapter 9,
“Container Orchestration,” is dedicated to deployment.

Operations

The operations part of the process needs to be automated as well. Again, we are
talking about hundreds to thousands of microservices—organizational
capabilities need to mature enough to handle this level of complexity. You’ll
need a support system, including the following:

* Monitoring. From infrastructure to application APIs to last-mile
performance, everything should be monitored, and automatic alerts with
proper thresholds should be put in place. Consider building live dashboards
with data and alerts that pop up during issues.

* On-demand scalability. With microservices, scalability is the simplest task.
Provision another instance of your microservice you want to scale and just
put it behind the existing load balancer and you are all set. But in a scaled
environment, this also needs to be automated. As we will discuss later, it is a
matter of setting up an integer value to tell the number of instances you want
to run for a particular microservice.

» API exposure. In most cases, you will want to expose the APIs externally
for external users to consume. This is best done by using an edge server,
which can handle all the external requests. It can utilize the API gateway and
discovery service to do its job, and you can use one edge server per device
type (e.g., mobile, browser) or use case. An open source application created
by Netflix, called Zuul, can be utilized for this function and beyond.

* Circuit breaker. Sending a request to a failed service is pointless. Hence, a
circuit breaker can be built that tracks the success and failure of every request
made to every service. In the case of multiple failures, all the requests to that
particular service should be blocked (break the circuit) for a set time. After
the set time expires, another attempt should be made, and so on. Once the

response is successful, reconnect the circuit. This should be done at the
service instance level. Netflix’s Hystrix provides an open source circuit-
breaker implementation.

Migrating a Monolithic Application to Microservices

While most of the best practices for building a new microservices-based
application apply to migrating from an existing monolithic application as well,
there are some additional guidelines that, if followed, will make the migration
simpler and more efficient.

Although it may sound correct to convert the whole monolithic application to a
completely microservices-based application, it may not be efficient or may be
very costly in some cases to convert every function or capability into
microservices. You might end up writing the application from scratch, after all.
The right way to migrate may require a stepwise approach, as shown in Figure
4.4,

&
m%

Servica
3

/@ @
0

!
osa
L

) D)
&)

1
1

1
1)l
<)

i j
foe=s]
Sernvice Service
n 2

Service ns1

| A

In-Memor

Database

Figure 4.4 Basic migration steps, monolithic to microservices

The next question is, Where do we start with the current monolithic
application? If the application is really old and it would be time consuming and
difficult to take pieces out (i.e., if there is very high level of cohesiveness), then
it is probably better to start from scratch. In other cases where parts of the code
can be disabled quickly and the technology architecture is not completely
outdated, it is better to start with rebuilding the components as microservices and
replace the old code.

Microservices Criteria

The question then becomes what components should be migrated first or even
migrated at all. That brings us to what I call the “microservices criteria,” which
outline one of the possible ways to select and prioritize the functions that should
be migrated to microservices. They are a set of rules you establish that either

qualifies or disqualifies the conversion of your existing monolithic application’s
components to microservices given the organization’s needs at that time.

That “time” is very important here because with time the needs of the
organization may change, and you may have to come back and convert more
components to microservices later. In other words, with changing needs,
additional components of your monolithic application may qualify for the
conversion.

Here are best practices that can be considered as microservices criteria during
the conversion process:

* Scale. You need to determine which functions are highly used. Convert the
highly used services or application functionality as microservices first.
Recall, a microservice performs only one well-defined service. Keep the
principle in mind and divide the application accordingly.

* Performance. There likely are components that are not performing well, and
other alternatives are readily available. It may be there is open source plugin
available, or you may want to build a service from scratch. One of the key
things to keep in mind is the boundary of a microservice. As long as you
design your microservice in such a way that it does one and only one thing
well, it is good. Determining the boundary is often going to be hard, and you
will find it easier to do this with practice. Another way to look at the
microservice boundary is that you should be able to rewrite the whole
microservice in a few weeks’ time (if/when required) as opposed to taking
few months to rewrite the service.

* Better technology alternatives or polyglot programming. Domain-specific
programming languages can be employed to help with problem domains.
This is particularly applicable to components for which you received many
enhancement requests in the past and you expect that to continue. If you think
not only that such a component’s implementation can be simplified using a
new language or capability in the market but also that future maintenance and
updates would become easier, then now is the right time to address such
changes. In other cases, you may find another language provides easier
abstractions for concurrency than the current one used. You can leverage the
new language for a given microservice while the rest of the application can
still be using a different language. Likewise, you may want some
microservices to be extremely fast and may decide to write them in C to get
the maximum gains rather than writing in another high-level language. The
bottom line is to take advantage of this flexibility.

» Storage alternatives or polyglot persistence. With the rise of big data,
some components of the application may provide value by using NoSQL
databases rather than relational databases. If any such component in the
application may benefit from this alternative, then it may be right time to
make the switch to NoSQL.

» These are the key aspects you should consider for each service or feature
within your monolithic application, and you need to prioritize the conversion
of such items first. Once you have derived the value from high-priority items,
you can then apply other rules.

* Modification requests. One important thing to track in any software
lifecycle is the new enhancements requests or changes. Features that have a
higher number of change requests may be suitable for microservices because
of the build and deployment time. Separating such services reduces the build
and deployment time, as you will not have to build the entire application, just
the changed microservice, which may also increase availability time for the
rest of the application.

* Deployment. There are always some parts of the application that add
deployment complexity. In a monolithic application, even if a particular
feature is untouched, you still must go through the complete build and
deployment process. If such cases exist, it is beneficial to cut out such pieces
and replace them with microservices so your overall deployment time is
reduced for the rest of the monolithic application. We talk more about this
after we learn about containers.

 Helper services. In most applications, the core or main service depends on
some of the helper services. The unavailability of such helper functions may
impact the availability of the core service. For example, in our helpdesk
application, discussed in Chapter 11, ticketing depends on the product catalog
service. If the product catalog service is not available, the user will be unable
to submit a ticket. If such cases exist, helper services should be converted to
microservices and appropriately made highly available so they can better
serve core services. These are also called circuit-breaker services.

Depending on the application, this criteria may require most of the services to
be converted to microservices, and that is okay. The intention here is to simplify
the conversion process so that you can prioritize and define the roadmap for your
migration to a microservices-based architecture.

Rearchitecting the Services

Once you have identified the functions to be migrated as microservices, it’s time
to start rearchitecting the selected services following the best practices from the
earlier scenario. Here are the aspects to keep in mind:

* Microservices definition. For each function, define the appropriate
microservices, which should include communication mechanism (API),
technology definition, and so on. Consider the data your existing function
uses, or create and plan accordingly the data strategy for microservices. If the
function was on heavy databases such as Oracle, would it make sense to
move to MySQL? Determine how you are going to manage the data
relationship. Finally, run each microservices as a separate application.

* Refactor code. You may reuse some of the code if you are not changing the
programming language. Think about the storage/database layer—shared vs.
dedicated, in-memory vs. external. The goal here is not to add new
functionality unless required but to repackage the existing code and expose
the required APIs.

* Versioning. Before you begin coding, decide on the source control and
versioning mechanism, and make sure these standards are followed. Each
microservice is to be a separate project and deployed as a separate
application.

» Data migration. If you decide to create a new database, you will have to
migrate the legacy data also. This is usually handled by writing simple SQL
scripts depending on your source and destination.

* Monolithic code. Initially, leave the existing code in place in the monolithic
application in case you have to roll back. You can either update the rest of the
code to use the new microservices or, better, split your application traffic, if
possible, to utilize both the monolithic and microservices version. This
provides you the opportunity to test and keep an eye on performance. Once
confident, you can move all the traffic to microservices and disable/get rid of
old code.

* Independent build, deploy, and manage. Build and deploy each
microservice independently. As you roll out new versions of microservices,
you can again split the traffic between the old and the new version for some
time. This means that you may have two or more versions of the same
microservice running in the production environment. Some of the user traffic

can be routed to the new microservice version to make sure the service works
and performs right. If the new version is not performing optimally or as
expected, it would be easy to roll back all the traffic to the previous version
and send the new version back to development. The key here is to set up the
repeatable automated deployment process and move toward continuous
delivery.

* Old code removal. You can remove your temporary code and delete the data
from the old storage location only after you have verified that everything is
migrated correctly and operating as expected. Be sure to make backups along
the way.

A Hybrid Approach

When writing a brand-new application, developers can directly follow the
microservices architecture principles and blueprint to build the software
application, as we have discussed. Developers sometimes follow a kind of
hybrid approach of microservices and monolithic. In this case, they can develop
part of their application as microservices and the rest following standard
SOA/MVC practices based on certain criteria. The idea is that not all the
components of the application may qualify as microservices.

As we discussed in Chapter 3, microservices offer lot of flexibility, but this
flexibility comes at some cost. The hybrid approach is to balance the flexibility
and cost aspects with the understanding that, over time, components can be
pulled out of the monolithic part and converted to microservices on an as-needed
basis. The key is to keep both approaches in mind, along with microservices
criteria, during this transition.

PART II

Containers

Chapter 5

Docker Containers

This chapter covers another trending topic, Docker containers. As companies
expand, they experience growing pains due to software deployment and
scalability. Over time, with more users and features, the software tends to get
complex, and then the real software deployment and scalability nightmares
begin. We discussed in Chapter 1, “An Introduction to Microservices,” that
microservices can address the development challenge by simplifying the
architecture, but we also discussed that it pushes down the complexity of
operations, which includes deployment and scalability. Further complicating the
challenge is that, with microservices-based architecture, you are probably going
to have thousands of services to host, deploy, and manage. That’s where
containers come in to address most of our issues.

Docker is an open source technology initiative that addresses the deployment
and scalability problems by separating applications from the infrastructure
dependencies. It addresses these problems with containers, which allow us to
package the application with all its dependencies, including the directory
structure, metadata, processes space, sets of ports, and so on. We can run the
packaged application the same way, always, across all machines and
environments. That’s what makes Docker interesting and is the single biggest
factor in its meteoric rise. You might be thinking, that’s what virtual machines
(VM) do. To understand the difference, let’s see how these technologies are
different.

Virtual Machines

In its simplest form, a virtual machine is a self-contained system that includes
everything from its own operating system (called guest OS) to an application
environment and the application itself. Multiple virtual machines per host or
physical machine can be installed using a layer called a hypervisor on top of the
host machine OS. This hypervisor, also called type 2 hypervisor, acts as a proxy
for hardware, giving the impression to guest OSs that they are running on their
dedicated hardware. See Figure 5.1. The type 1 hypervisor directly runs on top
of the hardware without a host OS in place and is considered a bare-metal

hypervisor.

4 A

VM 1 VM 2 VM 3

App

Guest
0s

Hypervisor

Server Infrastructure

A 4

Figure 5.1 Basic virtual machine architecture with hypervisor atop the host
operating system (type 2 hypervisor)

The VM concept gained lot of traction and created a multibillion-dollar
industry because it allowed organizations to utilize the available hardware
resources to the best extent possible. Before virtualization, companies used to
run dedicated servers for an application. Sharing this infrastructure was okay in a
development environment, but in production, all of the server resources were
dedicated to one application as a best practice. This resulted in a wastage of
resources when the application couldn’t use all the resources at all times. We all
know how powerful these servers and machines have become over time. Hence
virtualization provided this huge opportunity to utilize the server resources more
efficiently, at the same time providing the application segregation such that each
application can run on its own OS as a separate virtual machine. This model has
been widely successful, and it’s actually how cloud originated—the rest is
history. Virtual machines offered many advantages:

« Efficiency. A virtual machine feels and works like a separate machine. The
key advantage is efficient resource usage and isolation from a security
standpoint.

* Flexibility. Resources can be allocated as needed. CPUs, memory, and the
like can all be distributed on an initial requirements basis and when needed.
Further, resource allocation can auto-adjust to some higher rate. This concept
is also known as elasticity.

* Backup and recovery. Virtual machines can be stored as a single file that
can be easily backed up on another source. If and when required, it can be
copied back.

* OS freedom. Different guest OSs can exist on the same hypervisor.
Therefore, you can support multiple applications catering to their specific OS
needs.

* Performance and moving. It is very easy to move a virtual machine from
one host to another in case of performance degradation on the host machine.
Most hypervisors support this feature automatically. VMware, a very
successful virtualization software, provides this capability with a feature
called VMotion, which enables the live migration of a running virtual
machine from one host to another.

There are many other advantages, such as cost saving, but this discussion
covers the key ones.

Why use containers? To answer that question, we need to also understand
some of the issues with virtual machines. If you look again at Figure 5.1, you
can likely point out the issues. We have a machine with a host OS. Then we have
a hypervisor and an extra OS per virtual machine. We all know an OS is bulky in
terms of resource consumption and size. First, it consumes a good chunk of
storage and requires a lot of processing power. Second, when we take a backup
of a virtual machine, even though it is mostly a single file, it is very big because
it contains an OS (Window, Linux, etc.), the installed application with the
dependencies, and its local data. Some VM backups may run more than 20GB.
This results in a few challenges:

* Sharing virtual machines. Moving and sharing virtual machines across a
WAN takes lot of time due to sheer size.

* Portability. When a coder ships a virtual machine to a fellow coder, over
time changes will likely be made to the application, databases, environment,
and so on. The coder will have to ship the whole VM file again, and there is
no way for him to do a diff between two VM files. Similar issues occur when
we go from development to test to production environments. Either the code

needs to be recompiled on every virtual machine, or we need to transfer the
complete environment.

» Performance overhead. The whole concept of an application talking to its
guest OS, which in turns talks to a hypervisor, which then talks to the host
OS that controls hardware to get the request fulfilled, is inefficient in the case
of a type 2 hypervisor. You can sense some performance issues here due to
extra layers. In the case of type 1 hypervisors, the hypervisors are directly
installed on the hardware, so the extra overhead of the hypervisor interacting
with the host OS goes away. However, the rest of the overheads previously
listed still exist.

 Efficient resource utilization. Resource usage on a virtual machine is
certainly better than running applications on physical machines with a single
OS, which leaves the resources idle when an application is lightly used. At
same time, virtualization isn’t perfect, either, because of the replicating of
multiple OSs with a hypervisor.

These are the challenges with virtualization, and the good news is that
containers address all of these issues and more. Let’s get right into containers.

Containers

Containers also provide a virtual environment that packages the application
processes, metadata, and file system—everything that is required by an
application to run. But unlike virtual machines, containers do not require their
own OSs. Instead, they are just wrappers around a UNIX process that directly
talks to the kernel to request and use the resources. Check out Figure 5.2.

Container Engine

Server Infrastructure

A 4

Figure 5.2 Basic container architecture. Dependencies: directory structure,
libraries, process space, and so on

As you can see, containers clearly provide the application and process isolation
where one application is completely unaware of the existence of another
application. But all the processes run on and share the same kernel used by OS.
How does this happen? Containers use resource isolation features of the Linux
kernel, such as control groups and namespaces, to allow independent processes
to run within a single Linux instance. This goes back to why each application
does not have its own OS, as VMs do. This also means that virtual machines
provide better isolation than containers provide. However, that’s what makes
containers very lightweight, making them easy to ship and move around.
Because of this lightweight nature of containers, you can run more containers on
a given hardware combination than if you were to run VMs. With containers,
you use your hardware resources much more efficiently.

These containers are also known as Linux containers or LXCs. The containers
concept has been around forever but has only recently gained significant
popularity due to Docker. As we discussed, Docker is an open source initiative
that introduced several changes to Linux-based containers to make them more
portable, easy to use, and flexible. It did that by implementing set of utilities that
enable the containers portability and flexibility. These utilities allow you to

easily create, ship, copy, and run containers. Using Docker containers, you can
overcome most of the disadvantages of using VMs.
There are some subtle differences between Linux and Docker containers:

* Processes. Within LXC, you can run multiple processes, whereas Docker
containers are restricted to run as a single process. If your application
consists of multiple processes, then you must run an equal number of Docker
containers. Although it creates a containers management problem, it provides
immense flexibility to the application system. Since there is one container per
process, you can manage and change behavior at a granular/process level.
This is a key advantage and represents the solution that was most needed for
microservices: a self-contained service with one process.

* Persistent storage. Docker containers are stateless, as they do not support
persistence storage. You must attach an external storage by mounting the
storage as a Docker volume.

* Portability. Docker provides more portability than does LXC, which is the
reason Docker become very popular. With LXC, the portability is not
guaranteed; that is, when you move an LXC container from one host to
another, it may not run smoothly due to different server configuration.
Docker, by contrast, guarantees that portability will not be an issue because it
abstracts the OS, networking, and storage details from the application better
than LXC does. So, when a developer is done with development and testing,
he or she can create an image, which can be downloaded on production and is
guaranteed to work on the production. This is a key complexity that Docker
containers address, making engineers’ lives a little easier.

Docker Architecture and Components

Docker uses a client—server architecture whereby the client talks to the Docker
daemon, which mainly provides all the services. Let’s review the components
that provide the workflow and toolsets to manage and deploy the containers,
completing the Docker ecosystem:

* Docker server or daemon. This resides on the host system and manages all
the containers running on the host machine.

* Docker container. This is a standalone virtual system that contains the
running process, all the files, dependencies, process space, and ports that are
required to run the application. Since every container has all the ports

available, we do the mapping at the Docker level. We talk more about this
later.

* Docker client. A user interface or a command-line interface is used to
communicate with the Docker daemon.

* Docker images. These are read-only template files of a Docker container that
you can move around and distribute. Unlike with virtual machines, these files
can be version controlled. Not only that, you can run docker diff to see
changes between two images. Each image consists of multiple layers that
may be shared across images. Suppose you have to upgrade the existing
application. The update will create a new layer on top of the existing image.
This means you can ship and deploy just the new layer, making the overall
process lighter and faster, and that’s what makes containers lightweight.

* Docker registry. This is a repository for sharing and storing Docker
container images. A well-known registry is Docker Hub (just like GitHub)
that allows you to pull or push the container images with public or private
access. You can have your own private registry within your organization.

* Dockerfile. This is a very simple text file where you can specify the
commands to build Docker images. It allows you to set up instructions to
install software; set up environment variables, working directories, and
ENTRYPOINT; and add new code using Docker commands. This result in a
customized software. We review Docker commands in Chapter 7, “Docker
Interface.”

* Docker Machine. Docker Machine allows you spin up Docker hosts on your
local machine or within your public or private cloud, including on various
service providers such as Amazon and Microsoft Azure. It also provides a
way to manage the hosts through Docker Machine commands—start,
stop, inspect, and more. For the latest information, refer to Docker
online documentation.

* Docker Swarm. Swarm provides out-of-the-box clustering capability
wherein a pool of Docker nodes act as one large Docker host. It is a separate
tool, which you can install using Docker Machine or, manually, by pulling
the Swarm image. At the time of writing, it is being integrated into the
Docker Engine. The setup process is pretty straightforward: configure the
Swarm manager on all the nodes, and you have it. The beauty is that we can
just tell Swarm to start our containers, and it will decide which node to start
them on, thus hiding all the complexity. In order to dynamically configure

and manage the services in the container, you use a discovery service. The
integrated option is called Swarm mode, and it works same as the Swarm
tool. It also supports load balancing and service discovery and hence acts as a
full-fledged orchestration engine. To enable Swarm mode, you use the simple
init command and add workers using the join command. We learn more
about Docker Swarm later in the book.

* Docker Compose. An application will have multiple components and
consequently will be running multiple containers. Docker provides the
Compose tool, which allows you to define and run multiple container
applications. You can define the application environment in a single
Dockerfile and the services in the docker-compose.yml file, which will
automatically spin up the required containers per the instructions in these
files. Like Docker Machine, Compose provides commands for managing the
application services with a single command.

Figure 5.3 shows how everything fits together from a logical architecture

perspective.
@ Docker Server

Docker Client ;3: > %@ @

@ Containers Images

F‘ul[®

Docker Registry

Images

Figure 5.3 Docker architecture: how it all fits together

In upcoming chapters, we present a detailed example of pulling and standing

up a Docker container. But first we go through the Docker installation (Chapter
6) and commands (Chapter 7). The key point for now is that Docker containers
provide a virtual environment, and the rest of the components are the toolsets to
manage and operationalize these containers.

So what are the advantages of using Docker technology? It not only addresses
many of the issues encountered with virtual machines but also provides VM
benefits and other advantages that make it a perfect fit for DevOps:

* Lightweight. Docker containers do not have their own OS, so their size is
reduced. Also, containers can be stored as images, which are simple files that
can be version controlled and distributed easily.

* Portable. A Docker container is the sum of an application and all its
dependencies bundled together independently of the deployment model, OS
version, and so on. This container can be easily transferred to another host
machine in the form of an image and run without any issues. You can build it
once and run it everywhere.

» Reuse. Docker images are simply a set of layers, and successive commands
create new layers of images to create a final image. Once an image is built,
Docker reuses it for new builds, which makes the builds faster and images
smaller, since it reuses or shares these images. For example, we may have an
image with, say, file 1 on top of an Apache web server running on Ubuntu.
Suppose we need another image with file 2 on top of Apache web server
running on Ubuntu. Since we already have the first image, Docker will reuse
all the layers of first image except the file 1 layer to create a second image.
That means both final images will share the Ubuntu and Apache layers, and
each image will have a file layer of its own, which will be the only difference
between these two images.

» Fast deployment. Docker containers are fully self-sufficient, lightweight
packages that are easy to distribute and are completely tested during the
testing cycle. The same container can be deployed in production with no or
very minimal changes, hence expediting the deployment and reducing the
rollbacks due to environment dependencies. This feature is also key for
continuous development.

« Efficient use of resources. Like virtual machines, Docker uses the resources
efficiently, perhaps better than virtual machines do, because of the Docker
containers’ lighter weight. At the same time, it provides acceptable isolation.
Because of their size, a higher number of containers can be installed on a host

machine compared to the number of virtual machines installed on the same
host.

In many cases, Docker containers are preferable to virtual machines, but let’s
be very clear: Docker is not going to replace virtual machines. In fact, typical
deployments have been taking advantage of the power of both technologies by
running Docker inside virtual machines, making the use of resources very
efficient.

The Power of Docker: A Simple Example

By now, you probably understand the power of Docker at a theoretical level. You
will learn a lot more in upcoming chapters, but let’s discuss a small Docker-
based deployment and the value it offers.

Assume you have to set up a basic WordPress site that has three parts: a web
server with all your WordPress applications, a relational database such as
MySQL, and storage to store this data. In a VM world, you can have all these
parts on one or more virtual machines. You need to create a VM using your VM
manager and then install the OS-specific software (MySQL, WordPress) on each
virtual machine. A typical deployment may look like Figure 5.4.

4 A

VM 1 VM 2

Hypervisor

Server Infrastructure

A 4

Figure 5.4 Typical virtual machine deployment

Let’s deploy the same configuration using Docker, keeping microservices in
mind. Remember what we discussed earlier: this will provide us independent and
standalone capability as an executable/process that communicates with other
services or programs through standard interprocess communication.

Similarly, we discussed that each Docker container runs just one process. You
make the containers work together by using link options—that’s what brings
them together. In this example, we need to create three containers:

Step 1: Data container. You can easily pull an existing basic Linux image
such as Ubuntu from the Docker Hub and run it. This way, you can create the
local storage, which is equivalent to creating a directory structure where you
want to store the data. You also have ability to allocate memory, storage, and
CPU. Following is the command:

Click here to view code image

docker create —-name mysql data container -v /var/lib/mysgl ubuntu

Step 2: MySQL container. Similarly, you can pull the latest MySQL version
image from the Docker Hub and run it on your local host. In the same run
command, you can map the volume created in the previous step. In less than 2
minutes, your database is up and running. Following is the command:

Click here to view code image

docker run --volumes-from mysql data container -v /var/
lib/mysql:/var/lib/mysql -e

MYSQL USER=mysgl -e MYSQL PASSWORD=mysqgl -e MYSQL DATABASE=test -e
MYSQL ROOT PASSWORD=test -it -p 3306:3306 -d mysql

Step 3: WordPress container. Just as we did in the previous step, we can pull
and run the latest image of WordPress. In the same run command, we can

link the MySQL database we created in the previous step:
Click here to view code image

docker run -d --name wordpress —--link mysql:mysql wordpress

You are all set up with a personal WordPress site in less than 10 minutes. See
Figure 5.5.

Docker Engine

Server Infrastructure

A 4

Figure 5.5 How just three containers can help create a WordPress site

You can see from Figures 5.4 and 5.5 how lightweight containers are—they
don’t need their own OSs. Not only that, their lightweight simplifies
maintenance and scaling aspects:

* Very simple upgrade process. Say you want to upgrade the image of
MySQL. All you need is to stop the MySQL container you started in step 2.
Pull the latest version of MySQL image and run it along with the mapping to
the same volume.

* Reuse. Say you want to customize a version of WordPress for your special
team. You can pull another WordPress image and run another Docker
container and link to the same database.

» Simple, straightforward clustering. Docker provides native clustering
called Swarm mode. Using just a few commands, you can create a cluster,
load balance, and discover your services. We learn more about this in
upcoming chapters.

Welcome to the world of containers. A lot is happening is this field, and the
Docker community is moving very fast on a daily basis to introduce new
capabilities. Also, lots of startup companies are trying to address some

challenges and add more automations. While we cover a lot more on Docker
containers in upcoming chapters, you should bookmark Docker’s community
page, https://www.docker.com/docker-community, to stay up to date.

https://www.docker.com/docker-community

Chapter 6
Docker Installation

Until a year or so, it was a pain to install Docker, but now it’s a piece of cake.
Docker is based on Linux technology, which is good news, as most of the Linux
major distributions such as Centos, Ubuntu, and Amazon Linux support Docker.

In this chapter, we cover installation on Mac OS X, Windows, and Ubuntu
Linux.

Installing Docker on Mac OS X

These installation instructions assume your Mac is from 2010 or later, with OS
X 10.11 or later. To verify, click the Apple icon and select About This Mac. We
will download and work with Docker release 17.03.0:. This is the latest release
at the time of writing this book.

1. Enter the following URL in your browser: https://docs.Docker.com/Docker-
for-mac/install/#download-Docker-for-mac. Click Get Docker for Mac
(Stable) to start downloading the Docker toolbox in your Downloads folder.

2. Double-click the package to open it. You should see the pop-up shown in
Figure 6.1.

@ @ Docker

Docker Applications

https://docs.Docker.com/Docker-for-mac/install/#download-Docker-for-mac

Figure 6.1 Drag and drop

3. Drag the Docker whale icon into your Applications folder to download the
Docker application to your machine, as shown in Figure 6.2.

Favorites Name A Date Modified Size
l:l All My Files L] Dlas'1:1baa.ld Sep 9, 2014, 5.03 .:‘.'\‘ 551 KB
B Dictionary May 20, 2016, 2:07 AM 14.5 MB

¢ iCloud Drive > & Docker Mar 6, 2017, 5:39 AM 216.9 MB
@ AirDrop . DVD Player Sep 9, 2014, 4:39 PM 23.5 MB
£ FaceTime May 20, 20186, 2:07 AM 8.9 MB

#% Applications & Font Book Aug 12, 2014, 4:38 PM 13.8 MB
] Desktop % Game Center Jun 23, 2014, 2:48 PM 3.2 MB
0 Downloads /M GarageBand Jun 25, 2015, 10:28 AM 1.1 GB
€ Google Chrome Jan 31, 2017, .13 PM 366.4 MB

(5 Documents L iBooks May 20, 2016, 2:07 AM 3.2 MB
L% narminderkocher & Image Capture Sep 9, 2014, 4:38 PM 29MB

Figure 6.2 Applications folder with Docker added

4. Double-click the Docker application and click Open. It will give you the
screen shown in Figure 6.3; click OK.

Docker needs privileged access.

Docker for Mac needs privileged access 1o install its networking
components and links to the Docker apps.

You will be asked for your password.

Figure 6.3 Allow access

5. You will see another pop-up asking for your Mac OX password. Enter your
password.

6. If you have installed Docker toolbox in the past, you will see the pop-up
shown in Figure 6.4 giving you the option to copy your existing Docker
images and containers. Select Copy if you want to copy over existing
images; otherwise, select No. If it is a fresh install, you will not see this
screen.

Toolbox migration assistant
A local machine named "default” has been found. It is probably the one

hosting your Docker images and containers if you previously used
Docker Toolbox. Do you want to copy data from that machine?

Figure 6.4 Pop-up shown if you have installed Docker toolbox in the past

7. This will start the installation process; when complete, your Docker engine
will start, as shown in Figure 6.5.

9ba&dBeE s DF 0

@ Dockeris now up and running!

Open your faverile terminal and
slart typing Docker commands,

@.

Click on tho whalo in your ménu bar to
2CCOSSs repos, swarms, sottings,
documentation and moro.

Discovor Dockeor Cloud Sorvicos

a Doploy, rogister and manago your
SWaArmas.

o Automate build and test pipelines
f\% for any of your repos.

ot Collaborato as a toam across
@ apos, builds, and Swarms.

Figure 6.5 Result when installation is complete

That’s it—your installation of the Docker is complete.

Once the environment is up, it gives you an opportunity to register on Docker
Hub. Recall that Docker Hub is the cloud-based registry service for storing and
distributing Docker images. It has public space where you can share your
Docker images, and they will be available for anyone to access. You can also
purchase a private option to limit access to only your team.

If you are already registered, enter your username and password (or you can
skip it for now). Upon signing in, you are taken to the Docker Hub where you

can explore all the publicly available Docker images or you can start creating
Docker images, as shown in Figure 6.6.

& =9 _._\ LOGIN
Containors All Recommoended My Repoa
Roecommendasd
itomatio
hello-workd-nginx
A lighvi-wolght ngine contaings

iraflos the foaluwos of

MivaSoript

Kitadmaths

=2 17 o CHEATE

=8 el CHEATE

aMicial

rodia

Redis is an opon souwce Ky
valud stom that funotlons as a

datn strectung sonor,

oMiclal
Jenkina

Orificin] Jenkins Dockor imiege

609 CREATE 1098 I:1:] CRILATE [
afficial Kitomatic
rethinkdb minecraft

Tha Minocraft multiplagor sonoar
allown Two OF Mo pliysns 1o
plary Minecrafl togoethoer

RathinkDB is an opon-sownc,
docurmant database that makoes it
easy 1o bulld and scale realtim. ..

a1 -1 CREATE o 20 L1 CREATE |

Figure 6.6 Docker Hub homepage

We learn all about Docker commands in the next chapter, but let’s try some
basic ones now. First, let’s verify the Docker version we installed and play with
Docker Terminal.

Open a terminal window on your Mac. Execute docker --version to
confirm the version of Docker installed on your machine, as shown in Figure
6.7.

PKOCHER-M-343K:~ parminderkochers docker --version
Docker version 17.03.0-ce, build 60cch2e
PKOCHER-M-343H:~ parminderkochers il

Figure 6.7 Docker version confirmation

You are all set with Docker version 17.03.0. To list the commands, execute
docker --help. You should see all the commands available to you, as shown

in Figure 6.8.

PROCHER-M-3493K:~ parminderkochers docker --help
Usage: docker COMMAND

A self-sufficient runtime for containers

Options:
--config string Location of client config Files [default “fUsers/par
minderkocher/.docker”)
-0, --debug Enable debug mode
--help Print usage
-H, --host list Daemon socket[s) to connect to [default [])
-l, --log-level string Set the logging level [“debug”, “info”, “warn”, “error”,
"fatal”] [default “info"]
--tls Use TLS; implied by - -tlsverify
--tlscacert string Trust certs signed only by this CA [default "fUsersf
parminderkocher(.docker/ca.pem”)
--tlscert string Path to TLS certificate file [default “/Users/parmin
derkocher/.docker/cert.pem”)
--tlskey string Path to TLS key file [default "fUsers/parminderkocher
[.docker/key.pem”]
-=tlsuerify Use TLS and verify the remote
=y, ==-yersion Print version information and quit

Management Commands:
checkpoint Manage checkpoints
container Manage containers

Image Manage images
network Manage networks
node Manage Swarm nodes
plugin Manage plugins
secret Manage Docker secrets
seruice Manage services
stack Manage Docker stacks
Swarm Manage Swarm
system Manage Docker
volume Manage volumes
Commands:
attach Attach to a running container
build Build an image from a Dockerfile
commit Create a new image from a container's changes
cp Copy files/folders between a container and the local filesystem
create Create a new container
deploy Deploy 2 new stack or update an existing stack
diff Inspect changes to Files or directories on a container’s filesystem
eyents Get real time events From the server
EXEC Run a command in a running container
export Export a container’s filesystem as a tar archive

Figure 6.8 Docker commands available to you

Installing Docker on Windows

These installation instructions assume you are working on a 64-bit Windows 10
Pro Enterprise or Education edition. The Hyper-V package must also be enabled

to properly install Docker. If it is not, refer to Docker Help
(https://docs.Docker.com/Docker-for-windows/install/#download-Docker-for-
windows) before proceeding. We will download and work with Docker version
17.03.0, the latest release at the time of writing:

1. Enter the following URL in your browser: https://docs.docker.com/docker-
for-windows/install/#download-docker-for-windows. Click Get Docker for
Windows (Stable). This should start downloading the Docker toolbox in
your Downloads folder.

2. Double-click on the package to open it. You should see the license
agreement screen, shown in Figure 6.9.

1% Docker Setup . X
Please read the Docker License Agreement

[DOCKER FOR WINDOWS 17.03.0-CE-WIN1 -~
[END USER LICENSE AGREEMENT

iTHIS DOCKER FOR WINDOWS END USER LICENSE
iAGREEMENT ("AGREEMENT"™) I5 BY AND BETWEEN
|DOCKER, INC., LOCATED AT 144 TOWHSEND

[STREET, SAN FRANCISCO, CA 94107 (“DOCKER")

[AND YOU OR THE ENTITY ON WHOSE BEHALF YOU

|ARE ENTERING INTO THIS AGREEMENT (*YOU"” OR
i"CI.ISTﬂMER“} AND GOVERNS YOUR USE OF DOCKER
|FOR WINDOWS AND AMY RELATED UPDATES MADE
|r#.‘|"AILABLE BY DOCKER TO YOU (“LICENSED
|SOFTYWARE™). w

Dlmmamﬁinﬁm&mhﬂm

Print Back y Install Cancel

Figure 6.9 Docker license agreement

3. Accept the terms and conditions by checking the checkbox at the bottom of
the screen, and then click Imstall to install Docker on your Windows
machine.

4. After it installs, you should see a small “Docker is starting” pop-up at the
bottom right of the screen. Once it starts, you will see the pop-up shown in
Figure 6.10, and you’re all set!

https://docs.Docker.com/Docker-for-windows/install/#download-Docker-for-windows
https://docs.docker.com/docker-for-windows/install/#download-docker-for-windows

® Docker is now up and running!

Open your favorite terminal and start
typing Docker commands.

[EX Microsof PowerShel T A

Click on the whale in your task bar to
access swarms, repositories,
documentation, settings and more.

Discover Docker Cloud Services

& Deploy, register and manage your
Swarms.

K Automate build and test pipelines
for any of your repos.

Ca Fallalmeats as o bamme sssemes e

We send usage statistics, check your privacy settings,

Figure 6.10 Post-installation pop-up

That’s it—your installation of the Docker tools is complete.

We will learn Docker commands in the next chapter, but let’s use some basic
ones. Let’s verify the Docker version we installed and play with Docker
Terminal.

Open a terminal window. Execute docker --version to confirm the
version of Docker installed on your machine, as shown in Figure 6.11.

B Command Promgpt

C:\Users:docker --version
Docker version 17.03.0-ce, build 60cched

C:\Users:

Figure 6.11 Docker version confirmation

You are all set with Docker version 17.03.0
To list the commands, execute docker --help. You should see all the
commands available to you, similar to what was shown earlier in Figure 6.11.

Installing Docker on Ubuntu Linux

We will download and work with Docker version 17.2.3, the latest release at the
time of writing. For up-to-date information on the most recent release, see
https://docs.Docker.com/engine/installation/linux/ubuntu/#install-using-the-
repository. Also refer to this URL if you are working with a different flavor of
Linux.

These installation instructions assume your Ubuntu installation is a 64-bit
version and one of the following versions:

* Trusty 14.04

* Yakkety 16.10

* Xenial 16.04

You can check the version by executing the following command, as shown
Figure 6.12:

$ 1lsb release -a

https://docs.Docker.com/engine/installation/linux/ubuntu/#install-using-the-repository

& @ pkocher@pkocher-dev: ~

pkocher@pkocher-dev:~5 Isb_release -a
No LSB modules are available.
Distributor ID: Ubuntu

Description: Ubuntu 14.09.3 LTS
Release: 19.04

Codename: trusty
pkocher@pkocher-dev:~5 I

Figure 6.12 Ubuntu version check

The steps also assume it is a fresh install of Docker on your Linux box. While
we have used Trusty 14.04, these instructions are applicable to the other two
versions as well.

If you are working with Trusty 14.04, it is recommended that you install linux-
image-extra -* packages if they are not already installed. These packages allow
Docker to use the AUFS storage drivers. AUFS is the default storage backend
for Docker installed on Ubuntu. (Device Mapper is the default on other flavors.)
To install the packages, run the following command:

$ sudo apt-get update

& @ pkocher@pkocher-dev: ~

pkocher@pkocher-deu:~5 sudo apt-get update

lgn http:f/us.archive.ubuntu.com trusty InRelease

lgn http:f/extras.ubuntu.com trusty InAelease

Get: 1 http//us.archive.ubuntu.com trusty-updates InRelease [65.9 kB]

Get: 2 http//extras.ubuntu.com trusty Release.gpg [72 B]

lgn http://dl.google.com stable InAelease

Get: 3 http://security.ubuntu.com trusty-security InRelease [65.9 kB]

Hit http://extras.ubuntu.com trusty Release

Get: 4 http:/{dl.google.com stable Release.gpg [916 B]

Get: 5 http//us.archive.ubuntu.com trusty-backports InAelease [65.9 kB]

Hit http://extras.ubuntu.com trusty/main Sources

Get: 6 http://security.ubuntu.com trusty-security/multiverse amd64 Packages [4,139 B]
Get: ? http:/fdl.google.com stable Release [1,189 B]

Hit http://extras.ubuntu.com trusty/main amd6Y Packages

Hit http://us.archive.ubuntu.com trusty Release.gpg

Hit http://extras.ubuntu.com trusty/main i386 Packages

Get: 8 http://dl.google.com stable/main amd6Y Packages [1,427 B]

Get: 9 http:/{us.archive.ubuntu.com trusty-updates/main Sources [393 kB]

Get: 10 http://security.ubuntu.com trusty-security/universe amd64 Packages [154 kB]
Get: 11 http://us.archive.ubuntu.com trusty-updates/restricted Sources [5,311 B]
Get: 12 http://security.ubuntu.com trusty-security/main amd64 Packages [593 kB]

Figure 6.13 Installing additional packages

The preceding command pulls all the latest packages, as shown in Figure 6.13,
and now you are ready to install these updates. Execute the following command:

Click here to view code image

$ sudo apt-get install \
linux-image-extra-$ (uname -r) \

linux-image-extra-virtual

This command installs the updates, and now you can install Docker on your
Linux system. There are two different editions available: Docker CE
(Community Edition) and Docker EE (Enterprise Edition). We will work with
CE edition:

1. You need to install the Docker repository, from which you can then pull the
Docker install. Install the package by executing this command to allow apt-
get to use the repository over HTTPS:

Click here to view code image

$ sudo apt-get install \
apt-transport-https \

ca-certificates \
curl \ software-properties-common

2. Add the GPG key for the official Docker repository to the system:

Click here to view code image

$ curl -fsSL https://download.Docker.com/linux/ubuntu/gpg | sudo apt-

3. Validate that the key fingerprint is 9DC8 5822 9FC7 DD38 854A E2D8
8D81 803C OEBF CD88 (see Figure 6.14):

Click here to view code image

$ sudo apt-key fingerprint OEBFCD88

pub 4096R/0EBFCDBB 2017-02-22
Key fingerprint = 30C8 5822 3FC? DD38 854A E208 B0B1 B03C OEBF CDBB

uid Docker Release [CE deb] <docker@docker.com:
sub 40S6R/F273FCOB 2017-02-22
pkocher@pkocher-dev:~5 I

Figure 6.14 Key fingerprint validation

4. Add the Docker repository to APT (Advanced Packaging Tool) sources:
Click here to view code image

$ sudo add-apt-repository "deb [arch=amd64] <-DOCKER-EE-URL> \
$(lsb release -cs) \ stable-"

5. Update the package index with the Docker packages from the newly added
repository:

$ sudo apt-get update
6. Install the latest version of Docker (see Figure 6.15):
$ sudo apt-get install Docker-ce

https://download.Docker.com/linux/ubuntu/gpg

pkocher@pkocher-dev: ~

Unpacking liberror-perl [0.17-1.1] ...

Selecting previously unselected package git-man.
Preparing to unpack ... /git-man_1%3al.9.1-1ubuntu0.3 all.deb ...
Unpacking git-man [1:1.9.1-1ubuntu0.3] ...

Selecting previously unselected package git.
Preparing to unpack ... /git_1%3al.9.1-lubuntuD.3 amdBY.deb...
Unpacking git [1:1.9.1-lubuntuD.3] ...

Selecting previously unselected package cgroup-lite.
Preparing to unpack .../cgroup-lite 1.9 all.deb ...
Unpacking cgroup-lite [1.9] ...

Processing triggers for man-db [2.6.7.1-1ubuntul] ...
Processing triggers for ureadahead [0.100.0-16] ...
ureadahead will be reprofiled on next reboot

Setting up aufs-tools [1:3.2+20130722-1.1] ...

setting up docker-ce [17.03.0~ce-0~ubuntu-trusty] ...
docker start/running, process 31184

Setting liberror-perl [0.17-1.1] ...

Setting git-man [1:1.8.1-lubuntu0.3] ...

Setting git [1:1.9.1-lubuntuD.3] ...

Setting cgroup-lite [1.9] ...

cgroup-lite start/running

Processing triggers for libc-bin [2.19-0ubuntub.6] ...
Processing triggers for ureadahead [0.100.0-16] ...

pkocher@pkocher-dev:~5 I

Figure 6.15 Latest version of Docker being installed

7. Confirm the version, as shown in Figure 6.16:

S Docker —-version

@ ®) pkocher@pkocher-dev: ~

pkocher@pkocher-dev:~$ docker --verslon
Docker version 17.03.0-ce, build 3a232cH
pkocher@pkocher-deu:~$

Figure 6.16 Docker installation confirmation

That’s it—your installation of Docker on Ubuntu Linux is complete.

Chapter 7

Docker Interface

In Chapter 5, “Docker Containers,” we talked about Dockerfile, which contains a
set of commands that are executed by the Docker daemon. In this chapter, we
cover the most commonly used commands. Then we create a Dockerfile using
the commands and execute the file to review results.

Key Docker Commands

You can think of the following compendium of commands as the proverbial
bible that must be mastered to work successfully with Docker—everything from
searching and building images to creating your own Dockerfile. We review the
simpler commands first and then build on them to get to some more involved
ones.

Docker Search

The docker search command can be run on Docker CLI to search the
available images in the Docker registry:

docker search [options] term

The GUI-based client also provides the search capability.

In the example shown in Figure 7.1, docker search mysqgl returns all
the images that have “mysql” in the name of the image. As you can see, it
returns the top 25 results. The GUI-based search provides similar results, as
shown in Figure 7.2.

Parminders-MacBook-Pro:~ parminderkochers docker Search mysgl

NRME DESCRIPTION

mysql MyS0L is a widely used, open-source relati...
mysql/mysgl-server Dptimized MyS0L Server Docker images. Crea...
archardup/mysgl

centurylink/mysg| Image containing mysql, Optimized to be li...
wnameless/mysqgl-phpmyadmin MySOL « phpMyRdmin https://index.dockerio...
sameersbn/mysgl

google/mysqgl MysS0L server for Google Compute Engine
inggstream/mysql My50L Image with Master-5lave replication
appcontainers/mysql Cent05 6.7 based Customizible MySOL 5.5 Co...
marvambass/mysgl My50L Server based on Ubuntu 19.04
jdeathe/centos-ssh-mysql Cent0S-6 6.5 =B6_BY4 / MyS0L.

azukiapp/mysgl Docker image to run MyS0L by Rzuki - http:...
frodenas/mysqgl R Docker Image for MySOL

ibourgeois/mysgl MySOL image From ibourgeonis/base
bahmni/mysgl Mysqgl container For bahmni, Contains the...
phpmentors/mysql MyS0L server image

jmoatifmysql

guihatanofmysgl MySOL Server on Ubuntu 149.04
lancehudson/docker-mysgl MyS0L is a widely used, open-source relati...
tetraweb/mysql

ukyiifmysqgl mysql base on alpine

wenzizone/mysql mysql

dockerizedrupal/mysgl docker-mysql

jau3r/mysql mysgl

ahmet2mir/mysqgl This is a Debian based image with MySQL se...

Parminders-MacBook-Pro:~ paraminderkochers i

Figure 7.1 Docker search results for “mysql”

STRRS OFFICIAL
1064 (0K]

41

41

27

23

20

13

o

ocooooooooQogQ = === o

RUTOMATED

[0K)
[0K]
[0K]
[0K)
[0K)
[0K)
[0K)
[0K]
[0K]
[0K)
[0K]
[0K]
[0K)
[0K)
[0K)
[0K)
[0K]
[0K)
[0K]
[0K)
[0K]
[0K)
[0K)
[0K]

mysql

Recommended

official

mysql

MySOL is a widely used, open-
souwrca relalional database
management system (RDBMS).

1033 200 CREATE

Other Repositories

mysql
mysql-server

Optimized MySOL Sorvar Docker
images. Created, maintained and
supported by the MySQL team ...

o241 00 CREATE

appcontainers

mysql

CentQS 6.7 based Customizible
MySQL 5.5 Contalner - 276 MB -

Updated &/31/2015

5 Q0o CREATE
samoeersbn

mysql

Mo description.

> 20 ooo CREATE

All Recommended My Repos

contunyink
mysql

Image containing mysql.
Optimized to ba linked to another
image/container.

27 o000 CREATE

dockerizedrupal
mysaql
docker-mysagl

I:‘) 'u o

phpmentors
mysql
MySQOL server imago

1 o000 CREATE

Figure 7.2 GUI-based search results for “mysql”

Although some of the results, such as dockerizedrupal, are unique, many are
duplicates because they’ve been uploaded by different users who have used them
for custom purposes or made integrations. Using the —-s option, the search
produces only the widely used files based on feedback from other users:

docker search -s 50 mysgl

This command returns all the images that have “mysql” in the name of the

image and at least 50 stars in feedback, as shown in Figure 7.3.

Parminders-MacBook-Pro:~ parminderkocher$ docker search —s 50 mysqgl

NAME DESCRIPTION STRARS OFFICIAL AUTOMATED
mysql MySOL is a widely used, open—source relati... 1044 [0K]
mariadb MarialB is a8 community—developed fork of M... 21y [0K]

Parminders-MacBook-Pro:~ paraminderkochers i

Figure 7.3 Search results with “mysql” in the name of the image and at least 50
stars in feedback

In this case, only two entries are listed, as they are the only two with more than
50 ratings.

Note

Docker has been evolving at a tremendous pace, so commands, options, and
even features and functionality change frequently across releases. For
example, as this book was written, the —s in search was deprecated; a flag
called -—-filter must be used instead. With the filter option, the

command to list all the MySQL images with star ratings of 50 or more
would be

docker search --filter stars=50 mysqgl

Docker Pull

The docker pull command downloads the requested image from the Docker
registry to our local machine:

docker pull image:tag

For example, docker pull MySQL, shown in Figure 7.4, pulls the MySQL
image from the registry. Unless a tag, such as version, is specified, this command
appends the “latest” tag by default instead of pulling all the MySQL images
available. The command is equivalent to

docker pull MySQL:latest

Parminders-MacBook-Pro:~ parminderkochers$ docker pull mysqgl
Using default tag: latest
latest: Pulling from library/mysql

bae249483d0b6: Pull complete

19de36¢cli2fc: Pull complete

ced2bebadded: Pull complete

6373BE6aea?al; Pull complete

f40aa?fe5068: Pull complete

cacl3qBfr3ved: Pull complete

b783bcaby4b3: Pull complete

f34304dc34e3: Pull complete

efb304a9495ff; Pull complete

E4ef882b700f; Pull complete

£31b?04c32b1; Pull complete

adfeb?Bactde: Pull complete

fere5410cdal; Pull complete

caib92f305b9; Pull complete

065018fec3d?: Pull complete

6762f304c834: Pull complete

library/mysql: latest: The image you are pulling has been verified. Important: image verification is a
tech preview feature and should not be relied on to provide security

Digest: sha256:842eeladIb0fI9561d3feeb5bb7eb137b2a2b4093f069e7363acefbb355eBelb
Status: Downloaded newer image for mysql: latest

Parminders-MacBook-Pro:~ parminderkochers i

Figure 7.4 The docker pull command pulling latest MySQL image from the
registry

Docker Images

The docker images command returns the list of available top-level images
on our local machine:

docker images|[options]

For example, docker images -a displays a list of all the top-level
images, along with their repository, tag, create date, and virtual size, as shown in
Figure 7.5. It does not show the intermediate layers’ images.

Parminders-MacBook-Pro:~ parminderkochers docker images —a

REPOSITORY TRG IMAGE 10 CREARTED UIRTUAL SIZE
ubuntu latest 31e54dfbll?3 4 weeks ago 188.4 mB
«none: <none: d74508fbBE3E 4 weeks ago 1868.4 M8
«none: <none: ce220l3cBY723 4 weeks ago 188.4 M8
<none: <none: d3alf33eBaba 4 weeks ago 188.2 mMB

Parminders-MacBook-Pro:~ parminderkochers 1l

Figure 7.5 The docker images command displaying list of all top-level
images, along with their repository, tag, create date, and virtual size

One important thing to keep in mind is that when we create or build Docker
images on our local machine, various intermediate layers are created. For
example, if we use a Dockerfile that may have multiple commands to build the
image, each command executed will result in one image layer. This is one of the
key aspects of Docker that make the containers lightweight and perfect for reuse.

Docker RMI

The docker rmi command removes the requested image(s) from our local
machine:

docker rmi[options] image [image, image...]

For example, the docker rmi MySQL command, shown in Figure 7.6,

removes the MySQL image, including all the layers that were installed, from the
host.

Parminders-MacBook-Pro:~ parminderkochers docker rmi mysaql

Untagged: mysqgl:latest

Deleted: 6762f304c83428bf1945e9ab0aal5119a8a758d33d33eca50bal3665a83b5d37
Deleted: 065018fec3d?c2B8754f0d40a3cld56f103996a49f2995FdeBe?9edlbdS24a3d0
Deleted: ca4yb92f305b322eebdSFafBf21S92a4eBfbl6aS6fced?44?c58c0c9356243384
Deleted: f27e5410cda3728deb33aB84fdalbEdB26c0bdbd02668ea9330ab6754F373ac3a
Deleted: adfeb?Bac4dedf1l24e45B85a62bbIaSbfbb7el6B6b4YF2977106dFFBECEB06CT
Deleted: 231b704c32blSa350ac3be00273a251b70386826cf32530470b534bfclc50bdBEb
Deleted: 64ef882b700fbBad04eBY3ecBea56552265513925f3ceafblalB?cdIcF2?eddf
Deleted: efb3045345¢f1eb4Bblal3f5052a0d0ef3365e38436f0f3dd581d4c??B854elal
Deleted: £34304dc34e325bb13db3?58368780bec04fcB3362381dE6bBY?76ab2B8B2B7e5d3a
Deleted: b783bc3b44b9bBed?b?B1bcB86183ad490e3b?bldca?d0aydfie3658493cbe5aS5a
Deleted: ca21348f372873b0b48ccc5a?e?ceBeI?dadefli3dbBEecBI3e231ciSbd548be
Deleted: f40aa?feS5dEBfYEebae?2ffla2B80B8c35411F773d140d986506F352b30e412171
Deleted: 6373BE6aea?ald3?Baef?cd4213300cab50d0ccbbeBddb0badiB620f5ce?3d0c53
Deleted: 2ed2b26a34edaB?dIdI?12d2?037a22abec0falcbeSbI24ed4f6870d5dc207f0d3
Deleted: 19de96cll2fccaSbEdel6611dc0a359b0b9377c551921ca?IacScFdaBbffFI3sI1
Deleted: ba249489d0b6512128b60a4910e?Bf32000c785d59e0593188a6602bd01155¢2
Parminders-MacBook-Pro:~ parminderkochers

Parminders-MacBook-Pro:~ parminderkochers

Farminders-MacBook-Pro:~ parminderkochers docker images

REPOSITORY TRG IMAGE 10 CREATED VIRTUAL SIZE
Parminders-MacBook-Pro:~ parminderkochers 1

Figure 7.6 MySQL image removed via docker rmi command

Docker Run

Once we download (pull) an image, the next logical step is to execute (run) the
image, and that’s what the docker run command does:

Click here to view code image

docker run [options] image: tag [command, args]

This command spins up a container with its own file system, ports, and IP
address. We can also pass some options along with the run commands with one
or more arguments. Following are some common options:

* 1 switches to interactive mode with STDIN open.

» t allocates a pseudo-tty console terminal.

Many other options are available for the docker run command, such as for
starting the process in the detached (-d) state (background)—that is, the
container will start but not listen to the command line. We can also specify
commands to override the default command that is part of the image we are
running. We can also specify runtime constraints on CPU and memory.

As an example, let’s pull the Ubuntu image and execute the run command (see
Figure 7.7):

docker pull ubuntu:latest

Parminders-MacBook-Pro:~ parminderkochers docker pull ubuntu: latest
latest: Pulling from libraryfubuntu

d3alf33eBa5a : Pull complete

c22013cB4723 : Pull complete

dP4SO0BFbEE3Z : Pull complete

S1e54dfbl1?3 : Pull complete

libraryfubuntu: latest: The image you are pulling has been verified. Important: image verification is a tech preview feature and
should not be relied on to provide security.

Digest: sha256:73fbe@308FSF5cb6e34342583108abY4FI0bbd?7070ecdfbe408ldaaYdbe3edl

Status: Downloaded newer image for ubuntu: latest
Parminders-MacBook-Pro:~ parminderkochers i

Figure 7.7 Downloading Ubuntu image from Docker Hub repository

That command pulls the latest image of Ubuntu on the local host, as shown in
Figure 7.8.

Parminders-MacBook-Pro:~ parminderkochers docker images -a

REPOSITORY TRG IMAGE 1D CREATED UIRTUAL SIZE
ubuntu latest 91e54dfbll?a 4 weeks ago 188.4 mB
<none> «none> d?4508fb6632 4 weeks ago 188.4 mB
<none> «none> c2c013chd?2l 4 weeks ago 186.4 mB
<none> «none> d3alf33eBa5a 4 weeks ago 188.2 MB

Parminders-MacBook-Pro:~ parminderkochers 1

Figure 7.8 Latest Ubuntu image pulled

Now let’s run Ubuntu on the local host with options i and t. Let’s also specify
that we want to run the shell process:

docker run -it ubuntu sh

We are now running the Ubuntu container on our local machine with an entry
to the shell prompt. From here, we can run any shell command we desire. Figure
7.9 shows a few simple ones, such as

*echo 'Learning Docker'
*ls

* cd bin (to view the contents of the bin directory)

Parminders-MacBook-Pro:~ parminderkochers docker run -it ubuntu sh

= echo ‘Learning Docker”;

Learning Docker

sls

bin boot dev etc home lib libEY media mnt opt proc root run sbhin sru sys tmp usr var
= ¢d bin

sls

bash chgrp dumpkeys kill mknod openut sed true zfgrep
bunzipe chmod echo kmod mktemp pidof setfont udevadm zforce
bzcat chouwn eqrep less more ping setupcon umaunt zgrep
bzemp chut false lessecho mount ping6 sh uname zless
badiff cp fgconsole lessfile mountpoint plymouth sh.distrib uncompress zmore
bzegrep epio fgrep lesskey mt plymouth-upstart-bridge sleep unicode start 2new
bzexe dash findmnt lesspipe mt-gnu ps 55 udir

bzfgrep date grep In mu puwd sty which

bzgrep dd gunzip loadkeys nc rbash su whiptail

bzipg df gzexe login nc.openbsd readlink sync ypdomainname
bzip2recover dir gzip Is netcat rm tailf zcat

bzless dmesq hostname Isblk netstat rmdir tar zecmp

bzmore dnsdomainname ip Ismod nisdomainname run-parts tempFile 2diff

cat domainname kbd mode mkdir open running-in-container touch zegrep

=1

Figure 7.9 Running the interactive shell

As you can see, the bin directory has the essential programs that the system
requires to operate.

Docker ps

The docker ps command lists all the current running containers, as shown in
Figure 7.10:

docker ps [Options]
Remember that each container runs one and only one process. In this case, we
don’t have any running container, hence the empty list.

Parminders-MacBook-Pro:~ parminderkochers docker ps
CONTRINER 1D IMAGE COMMAND CRERTED STATUS PORTS NAMES
Parminders-MacBook-Pro ;~ parminderkochers

Figure 7.10 The docker ps command revealing all currently running
containers

Let’s run the ps command again with the —a option, as shown in Figure 7.11,
to see all the containers, even the ones that aren’t running.

Parminders-MacBook-Pro:- parminderkochers docker ps -a

CONTRINER 1D IMAGE COMMAND CRERTED STATUS PORTS
NAMES
cBbS7?0cBBed ubuntu “sh” 5 minutes ago Exited [0] 3 minutes ago

admiring_albattani
Parminders-MacBook-Pro:~ parminderkochers docker restart cBb3770cB8e9
cBbI770cBBe]

Figure 7.11 The —-a option adding inactive containers to the mix

As we can see, since we exited the shell prompt, our Ubuntu container is not
running or active anymore. It is not deleted, though, just inactive. We can restart
the container if we like, as we will learn soon.

Docker Logs

The docker logs command provides the given container’s log files, which
contain the standard (stdout and stderr) output of the container:

docker logs [Options] Container

This command is available only for containers with a JSON File logging
driver.

As an example, let’s run the following command to run the shell process:

docker run -it ubuntu sh

Run a couple of shell commands, such as 1s, —a, and cd bin, as shown in

Figure 7.12:

FEOCHER-M-343X:~ parminderkochers docker run -it ubuntu sh

#ls
bin dev home Lib6BY mnt proc run sry tmp var
boot etc lib media opt root sbin sys usr
od bin
als -3

false mare stty uname
e fgrep mount sU UNCOMPress
bash findmnt mountpoint sync vdir
cat grep mu systemctl wdcetl
chgrp gunzip networketl systemd which
chmod gzexe nisdomainname systemd-ask-password ypdomainname
chown gzip pidof systemd-escape 2cat
cp hostname ps systemd-inhibit 2cmp
dash journalctl pwd systemd-machine-id-setup 2diFf
date kill rbash systemd-notify zegrep
dd n readlink systemd-tmpfiles zfgrep
of login rm systemd-tty-ask-password-agent zforce
dir loginctl rmdir tailf zgrep
dmesg Is run-parts tar zless
dnsdomainname Isblk sed tempfile 2more
domainname mkdir sh touch Znew
echo mknod sh.destrib true
egrep mktemp sleep umount

Figure 7.12 Some examples of shell commands

Open another terminal window and find the container ID for the Ubuntu
container we just started by running the following command (see Figure 7.13):

docker ps -a

PROCHER-M-343K:~ parminderkochers docker ps -a

CONTAINER 1D IMAGE COMMAND CRERTED STATUS
PORTS NAMES
eded3539719¢c ubuntu “sh" B minutes ago Up 6 minutes
flamboyant edison
Ba3f4acd36ay ubuntu “sh" 7 minutes ago Exited [0] ? minutes ago

friendly wilson

PROCHER-M-343¥:~ parminderkochers I

Figure 7.13 Finding the container ID for the Ubuntu container we just started

Copy the container ID for the running Ubuntu container. Now we can execute
the log commands to review the log for this particular container (see Figure

7.14):

docker log eded3539719c

PKOCHER-M-343%:~ parminderkochers docker logs eded3533713¢c

s ls
bin dey home libEY mnt proc rum SPY tmp var
boot etc lib media opt root sbin sys usr
= cd bin
=15 -3

false maore sty uname
. Forep mount sU UNCOMPress
bash findmnt mountpoint sync udir
cat arep mu systemctl wdctl
chgrp qunzip networketl systemd which
chmod gzexe nisdomainname systemd-ask-password ypdomainname
chown nzip pidof systemd-escape zcat
cp hostname ps systemd-inhibit Zcmp
dash journaletl pwd systemd-machine-id-setup 2diff
date kill rbash systemd-notify zegrep
dd In readlink systemd-tmpfiles zfgrep
df login rm systemd-tty-ask-password-agent zforce
dir loginctl rmdir tailf Zgrep
dmesg Is run-parts tar zless
dnsdomainname |sblk sed tempFile zmore
domainname mkdir sh touch znew
echo mknod sh.distrib true
Bgrep mktemp steep umaunt
| |
L]
|]
|]
| |
| |
L]
]

PKOCHER-H-3934:~ parminderkochers Il

Figure 7.14 Executing the log commands to review this container’s log

We can see the content of the log—in this case, the history of commands that
have been executed.

Let’s take another, more complex example. Let’s download and create a
MySQL container.

First, pull the latest MySQL image (see Figure 7.15):

docker pull MySQL: latest

Parminders-MacBook-Pro:~ parminderkochers docker pull mysgl

Using default tag: latest

latest: Pulling from library/mysgl

ba243489d0b6:
19deS6ell2ie
ged2hesalyed
BE373BEaeatal
f4DaatteSdes
cacl3uBFaves
b¥Y83bcIbY4ba:
FI4309dca4el
efb304a345FF
EYsfBEEbLPOOF
2916704c32hI
adfeb?Bacide
F2reSYl0cdad
cadbIFI0503
0E5018F2c3d?
G762F304cHIY

Pull complete

: Pull complete
: Pull complete
: Pull complete
: Pull complete
: Pull complete

Pull complete
Pull complete

: Pull complete
: Pull complete
: Pull complete
: Pull complete
: Pull complete

Pull complete

: Pull complete

Pull complete

libraryfmysql: latest: The image you are pulling has been verifled. Important ; image verification is a tech preview feature and
should not be relied on to provide security.

Digest: sha2536:842eeladlb0f1I561d3ferb5bb?cb137b2acbY033F063r?363acefbbI55eBelb

Status: Downloaded newer image For mysgl:latest
Parminders-MacBook-Pro:- parminderkochers i

Figure 7.15 Latest MySQL image pulled

Next, use the run command to build the MySQL container (see Figure 7.16)
and note the container ID:

Click here to view code image

docker run --name myDatabase \
> —e MySQL ROOT PASSWORD=myPassword \
> —-d MySQL:latest

Here, name is the name of the database, e is the flag for environment variable
specifying the database password, and d is the option for the docker run
command to start the process in detached mode.

Parminders-MacBook-Pro:~ parminderkochers docker run --name myDatabase -e MYSOL_ROOT_PASSWORD=myPassword -d mysql:latest
febB85439597beBabiSed7acdFIB5a3315027329836ecefYafIb66669493d2c 3
Parminders-MacBook-Pro:~ parminderkochers il

Figure 7.16 Running the MySQL container

Next, verify the container process:

docker ps

Notice the container is up and running, as shown in Figure 7.17.

Parminders-MacBook-Pro:~ parminderkochers docker ps
CONTAINER 1D IMARGE COMMAND
febB5434537h mysql:latest "fentrypoint.sh mysqgl”
Parminders-MacBook-Pro:~ parminderkochers I

NAMES
myDatabase

STATUS
Up 24 seconds

CRERTED
25 seconds ago

PORTS
3306ftep

Figure 7.17 Verifying the container process

Now that the container is up and running, we need to connect to it. First we
need to know is the port. We know the default, but let’s check in the log file by
running the 1ogs command:

docker logs fcb85434597b

Here, fcb85434597b is the container ID we previously started (see Figure
7.18).

Parminders-MacBook-Pro:~ parminderkochers docker ps

CONTRINER 10 IMAGE COMMAKD CREATED
fcbB54345397b mysgl:latest “[entrypoint.sh mysgl” 25 seconds ago
Parminders-MacBook-Pro:~ parminderkochers

Parminders-MacBook-Pro:~ parminderkochers

Parminders-MacBook-Pro:~ parminderkochers docker logs Fcb854345370
Running mysql_install_db

2015-10-14 03:32:52 0 [Note] fusr/sbin/mysqld [mysgld 5.6.27] starting as process 15 ...
2015-10-14 03:32:52 15 [Note] InnoDB: Using atomics to ref count buffer pool pages
2015-10-14 03;32:52 15 [Note] Inno0B: The Inno0B memory heap is disabled

2015-10-14 03:32:52 15 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builting
2015-10-14 03:32:52 15 [Mote] Inno0B: Memaory barrier is not used

2015-10-14 03:32:52 15 [Note] Inno0B: Compressed tables use zlib 1.2.8

2015-10-14 03;32:52 15 [Note] InnoDB: Using Linux native RID

2015-10-14 03:32:52 15 [Note] InnoDB: Using CPU cre3g instructions

STATUS
Up 24 seconds

PORTS
3306 tcp

NAMES
myDatabase

2015-10-14 03:32:52 15 [Note] InnolB:
2015-10-14 03:32:52 15 [Note] InnoDB:
2015-10-14 03:32:52 15 [Note] InnoDB:
2015-10-14 03;32:52 15 [Note] InnoDB:

Initializing buffer pool, size= 126.0M
Completed initialization of buffer pool

The first specified data File ./ibdatal did not exist: a new database to be created!

Setting file .fibdatal size to 12 MB

2015-10-14 03:32:52 1S [Note] InnoDB:
2015-10-14 03:32:52 15 [Note] InnoDB:

Database physically writes the file Full: wait ...
Setting log file fib_logfilel0l size to 4B MB
2015-10-19 03;32:52 15 [Note] Inno0B: Setting log File .fib_logfilel size to 48 MB
2015-10-14 03:32:52 15 [Note] InnoDB: Aenaming log File .fib_logfilel0l to .fib logfiled
2015-10-14 03:32:52 15 [Warning] InnoDB: New log files created, LSN=457B1

2015-10-14 03:32:52 15 [Note] InnoDB: Doublewrite buffer not Found: creating new
2015-10-14 03:32:52 15 [Note] InnoDB: Doublewrite buffer created

2015-10-19 03:32:52 15 [Note] Inno0B: 128 rollback segment(s] are active.

2015-10-14 03:32:52 15 [Warning] InnoDB: Creating Foreign key constraint system tables.
2015-10-14 03:32:52 15 [Note] Inno0B: Foreign key constraint system tables created
2015-10-14 03:32:52 15 [Note] InnoDB: Creating tablespace and datafile system tables.
2015-10-14 03:32:52 15 [Note] InnoDB: Tablespace and datafile system tables created.
2015-10-14 03:32:52 15 [Note] Inno0B: Waiting For purge to start

2015-10-14 03:32:52 15 [Note] Inno0B: 5.6.27 started; log sequence number O

2015-10-14 03:32:53 15 [Note] Binlog end

2015-10-14 03:32:53 15 [Note] InnoDB: FT5 optimize thread exiting.

2015-10-14 03:32:53 15 [Note] Inno0B: Starting shutdown ...

2015-10-14 03:32:54 15 [Note] Inno0B: Shutdown completed; log sequence number 1625977

Figure 7.18 Running the 10gs command

As shown in Figure 7.

listening.

19, we see the version and the port where MySQL is

MySOL init process done. Ready for start up.

2015-10-14 03:33:00 0 [Note] mysqld [mysqld 5.6.27] starting as process | ...
2015-10-14 03:33:00 1 [Note] Plugin 'FEDERATED" is disabled.

£015-10-14 03:33:00 1 [Note] InnoDB:
2015-10-14 03:33:00 1 [Note] InnoDB:
2015-10-14 03:33:00 1 [Note] InnoDB:
2015-10-14 03:33:00 1 [Note] InnoDB:
2015-10-14 03:33:00 | [Note] Inno0B:
2015-10-14 03:33:00 1 [Note] InnoDB:
2015-10-14 03:33:00 1 [Note] InnolB;
e015-10-14 03:33:00 1 [Note] InnolB:
2015-10-14 03:33:00 | [Note] InnoDB:
£015-10-14 03:33:00 1 [Note] InnoDB;
2015-10-14 03:33:00 1 [Note] InnoDB:
2015-10-14 03:33:00 1 [Note] InnoDB:
2015-10-14 03:33:00 1 [Note] InnoDB:

Using atamics to ref count buffer pool pages
The InnoDB memary heap is disabled
Mutexes and rw _locks use GCC atomic builtins
Memory barrier is not used

Compressed tables use zlib 1.2.8

Using Linux native RID

Using CPU crc32 instructions

Initializing buffer pool, size= 126.0M
Completed initialization of buffer pool
Highest supported File format is Barracuda.
128 rollback segment(s] are active.

Waiting For purge to start

5.6.27 started; log sequence number 1625337

2015-10-14 03:33:00 1 [Note)] Server hostname [bind-address): '='; port: 3306

2015-10-14 03:33:00 1 [Note] IPvE is available.

2015-10-14 03:33:00 1 [Note] - "' resolves to " ;

2015-10-14 03:33:00 1 [Note] Server socket created on IF: ',

2015-10-14 03:33:00 | [Warning] 'proxies_priv’ entry '@ root@fcbB5434597b’ ignored in --skip-name-resolve mode.
2015-10-14 03:33:00 1 [Note] Event Scheduler: Loaded 0 events

2015-10-14 03:33:00 1 [Note] mysgld: ready for connections,

Uersion: '5.6.27" socket: "fvarfrun/mysgld/mysgld.sock’ port: 3306 MyS0L Community Server [GPL)
Parminders-MacBook-Pro:~ parminderkochers il

Figure 7.19 The version and port where MySQL is listening

Please note again that the Docker logs show the stdout and stderr

information for the container. Don’t confuse this with standard log file for
MySQL.

Note

Another way to check what port(s) a container is listening on is to check the
docker ps output. If you notice, from Figure 7.18, there’s a PORTS
column that says 3306/tcp, which indicates that MySQL will be listening on
port 3306.

Docker Restart

The docker restart command restarts the specified container:

docker restart [Options] Container ID (s)

Let’s restart our Ubuntu container by specifying the container ID, which is
c8b9770c88e9 from our earlier example. See Figure 7.20.

Parminders-MacBook-Pro;~ parminderkochers docker ps -a

CONTRINER 1D IMAGE COMMAND CRERTED STATUS PORTS
NAMES
cBb3770cBBel ubuntu “sh" S minutes ago Exited [0] 3 minutes ago

admiring_albattani
Parminders-MacBook-Pro;~ parminderkochers docker restart cBb3770cB8e3
CBbarr0cBBed

Figure 7.20 Restarting our Ubuntu container

If we run the ps command again, we should see an active container, as shown
in Figure 7.21.

Parminders-MacBook-Pro:~ parminderkochers docker restart cBb3770cB8eS

CBL3770cBBes

Parminders-MacBook-Pro:~ parminderkochers docker ps

CONTRINER 1D IMAGE COMMAND CREATED STATUS PORTS NAMES
cBb9770cBBes ubuntu “sh” 2 weeks ago Up 6 seconds admiring albattani

Parminders-MacBook-Pro:~ parminderkochers |l

Figure 7.21 The ps command revealing an active container

As you can see, we did not get the shell prompt. We can fix that by running the
docker attach command, which is discussed next.

Docker Attach

The docker attach command allows the user to attach to a specified
running container to control it interactively or to see the ongoing output:

docker attach[Options] Container ID

Let’s run this command to attach to our Ubuntu container, c8b9770c88e9, to
interact with the shell prompt. See Figure 7.22.

Parminders-MacBook-Pro:~ parminderkochers docker ps -a

CONTARINER 1D IMAGE COMMAND CREATED STATUS PORTS NRMES
cBb9770cHBel ubuntu “sh” B minutes ago Exited [0] 24 seconds ago admiring_albattani
Parminders-MacBook-Pro:- parminderkochers docker restart c8b3?770cB8ed

cBb3770cHBe9

Parminders-MacBook-Pro:~ parminderkochers docker ps

CONTARINER 1D IMAGE COMMAND CREATED STATUS PORTS NRMES
cBba7?0cABes ubuntu “sh" B minutes ago Up 5 seconds admiring_albattani

Parminders-MacBook-Pro:~ parminderkochers docker attach c8bS770cBBe

Figure 7.22 Interacting with the shell prompt via docker attach command

Notice we have the command prompt back and we can carry on. Another
important aspect is that we will always get to the shell prompt when we restart
this container—every time, no matter what. We cannot change its behavior
because that’s how we spun up the container initially using -it in our run
command. But certainly we can run the same Ubuntu image again with different
options, parameters, and commands. That’s the beauty of Docker.

Docker Remove

The Docker remove, or rm, command removes one or more specified containers:

docker rm [Options] Container (s)

As an example, let’s try to remove the Ubuntu container. We must stop the
container before we can remove it or use —f (force) option to directly remove it,
which actually sends a STGKILL to the process running inside the container,
and then container will be removed:

docker stop [Options] Container (s)

Figure 7.23 shows the status of our Ubuntu container. The Ubuntu container is
in running state and has been up for the last 38 hours, as shown under status
attribute.

Parminders-MacBook-FPro:~ parminderkochers docker ps -a

CONTARINER 1D IMAGE COMMAND CRERTED STATUS PORTS NAMES
cBb3770cHBes ubuntu “sh" 2 weeks ago Up 38 hours admiring_albattani
Parminders-MacBook-Pro:~ parminderkochers I

Figure 7.23 Status of Ubuntu container

Let’s run the stop command and execute ps — a again. See Figure 7.24.

Parminders-MacBook-Pro:~ parminderkochers docker stop cB8b8770cBBed

cBbI770cBBed

Parminders-MacBook-Pro:~ parminderkochers

Parminders-HacBook-Pro:~ parminderkochers docker ps -a

CONTRINER 1D IMAGE COMMAND CREATED STATUS PORTS NAMES
cBbI770cBBe3 ubuntu “sh” ¢ weeks ago Exited [137] 18 seconds ago admiring_albattani

Figure 7.24 Running the stop command and executing ps — a

As you can see, the container is no longer running, and the status is exited with
code 137, which means the container received the SIGKILL command. The

stop command sends a STGTERM and then STGKILL after a grace period. We

can adjust the grace period by specifying the number of seconds with the —t
option. The time option may be very important in instances where we want a
process to complete the outstanding requests, as in the case of HTTP.

We can also use the docker kill command, which directly sends the
SIGKILL; it does not give the container process an opportunity to exit
gracefully. However, it also provides options that let us send something other
than STGKILL to the container process.

Now that the container has been stopped, let’s remove the container and do ps
—a again. See Figure 7.25.

Parminders-MacBook-Pro.~ parminderkochers docker rm c8b3770cBBed

cBb9770cB8Bel

Parminders-MacBook-Pro:~ parminderkochers

Parminders-MacBook-Pro:~ parminderkochers docker ps -a

CONTRINER ID IMAGE COMMAND CREARTED STATUS PORTS NAMES
Farminders-Mac Book-Pro:~ parminderkochers i

Figure 7.25 Container removed

Notice that the container has been completely removed with no trace in the ps
—a command.

Docker Inspect

The docker inspect command provides in-depth, low-level information on
the container or image:

Click here to view code image

docker inspect [Options] Container ID/Image

Let’s run this command on our MySQL container, as shown in Figure 7.26;
recall that fcb85434597b is the container ID from previous examples:

docker inspect fcb85434597Db

Parminders-MacBook-Fro:- parminderkochers docker inspect febB34345320

[
{

“Id*: “fcbB5434597bcBabFSe9PacdFI85a33150272a9836eeefYaf I06566399302c39",
"Created™; "2015-10-14T03:32:52.5673163152",

“Path™: “fentrypaint.sh”,

"Args”: |

1

“mysqgld”

“State”: {

“Running”: true,

“Paused”: false,

“Restarting”: False,

“00MKilled™: false,

“Dead": false,

"Pid": 501,

“ExitCode™ 0,

“Ercor": ==,

“StartedAt™: "2015-10-14T03:32:52.6906865352",
"FinishedAt": “0001-01-01T00:00:002"

i
“Image”: "§726F738a87abiyfeb22?04dcEdDFEY 24090952 Fel | badddTd2BFcIdDIYSFFIA",
“NetworkSettings™: {

}

“Bridge™: "",
"EndpeintiD™; “Bbell?ced4el7IGbS22Fd0bIEdZdS2efBed 5B cedYd2T?abaB430293FFBeeb?”,
“Gateway™: "172.07.42.1" ,
"GloballPuBAddress™ =",
“GloballPvEPrefixlen™: 0,
“HalrpinMode™: false,
“|PRddress™: “172.17.0.6%,
"|IPPrefixLen”: I6,
“IPyBGateway™: =",
“LinkLocallPyERddress™ "7,
“LinkLocallPuEPrefixlen®: 0,
“MacAddress™: 02 :42:ac:11:00:06",
"Network|D™: "476d36259ec3cISBFF0eBbBcB7elbBYad035719190695a8cdd55hI 926 IcSSEFF",
“PertMapping”: null,
“Ports™: [
"3306/tep™: null
}

“SandboxKey”: “fuarfrun/docker{netns/fchB5435970",
“SecondarylPRddresses”™: null,
“SecondarylPvERddresses”: null

"ResoluCanfPath™: “fmnt/sdalfuarflibfdocker/containers/FcbB5434597bcBabfSed?acdiI85a331502 7329836 eeafuafIbbEE6I4I3d2cI resoly.conE”,
“HostnamePath™: “fmnt/sdalfvarflib/dockerfcantainers/fehBS4345970cBabFSe3tacdfIBSa33IS027aadBI6eeoFafdnE666999302c39/hostname”,

“HostsPath™: “fmnat/sdal/varflib/docker/containers/fcbB5Y34597bcBabf5e37acdFIB5a33150272a98 I6eeefiafIbEEBESY93d2c39/hosts™,

"LogPath™; "fmnt/sdal/var/lib/dockerfcontainers/fchB54934597bcBabF5e97acdFIB5a33IS0272a9836eeef af I0EE669493d2c39/FebB5434597beBabfSe97acdFIB5233

15027329836 eecFqaFIbE6669993d2c39-json.log”,

“Name": “[myDatabase”,
“RestartCount™: 0,
“Oriver”: "aufs",

Figure 7.26 Results of Docker inspect

Notice it returns the complete JSON array with all the information. We can
specify another format or query for some specific information, such as database
name, IP address, and port information.

This command returns the database name:

Click here to view code image

docker inspect —-format='{{.Name}}'

This command returns the IP address of the MySQL container:

Click here to view code image

docker inspect \

£cb85434597b

> —format="'{{.NetworkSettings.IPAddress}}' fcb85434597b

Docker Exec

The docker exec command enables you to remotely run a command in an
already running container:

Click here to view code image

docker exec [Options] Container ID Command [Arg...]

Let’s run this command on our Ubuntu container, as shown in Figure 7.27;
recall that c8b9770c88e9 is the container ID from previous examples:

docker exec c¢c8b9770c88e9 1ls -a

PKOCHER-M-343H:~ parminderkochers docker exec e510fBe?E9fc Is -a

.dockerenu
bin

boot

deu

etc

home

lib

libBY
media

mnt

opt

proc

root

run

shin

5ry

sys

tmp

usr

var
PKOCHER-M-343H:~ parminderkochers
PKOCHER-M-343H:~ parminderkochers

Figure 7.27 The docker exec command enabling the running of a command
in an already running container

Docker Rename

Are you tired of copying and pasting the container ID yet? We can give our
containers meaningful names that we can more easily remember and categorize.
The docker rename command enables us to rename an already running
container:

Click here to view code image

Usage: docker rename Container ID new_ name

Let’s rename our Ubuntu container. Let’s find the existing name first.

docker ps -a

Notice in Figure 7.28 that the current name of our container is jolly_gates.

PROCHER-M-393K:~ parminderkochers docker ps -a

CONTRINER 1D IMAGE COMMAND CRERTED STRTUS PORTS NAMES
eSI0FBerBfc ubuntu "sh” B minutes ago Up B minutes jolly_gates
eded3d539719¢c ubuntu "sh” 26 minutes ago Exited [0) B minutes ago flamboyant edison
Badfdacd36au ubuntu "sh" 28 minutes ago Exited [0] 27 minutes ago Friendly_wilson

PROCHER-M-3493K:~ parminderkochers docker Bl

Figure 7.28 Results of docker rename

Let’s execute the rename command:

Click here to view code image

docker rename e510f8e769fc Parminder

Notice in Figure 7.29 that executing the rename command changed the name
of our container.

PROCHER-M-3493K:~ parminderkochers docker ps -a

CONTRINER 1D IMAGE COMMAND CRERTED STATUS FORTS NRMES
e510F8e?69Fc ubuntu "sh” B minutes ago Up 8 minutes jolly_gates
eded3533719c ubuntu “sh” 26 minutes ago Exited [0) 8 minutes ago flamboyant_edison
6a3f4a2dicegy ubuntu "sh” 28 minutes ago Exited [0] 27 minutes ago friendty wilson

PHROCHER-M-3493K:~ parminderkochers docker rename e510f8e?B3fc Parminder
PROCHER-M-3493%:~ parminderkochers

PKOCHER-M-343K:~ parminderkochers

PROCHER-M-3493K:~ parminderkochers

PROCHER-M-343K:~ parminderkochers docker ps -a

CONTRINER 10 IMAGE COMMAND CRERTED STATUS PORTS NRMES
e510fBe?6Ifc ubunty "sh” 10 minutes ago Up 10 minutes Parminder
eded3535719c ubuntu "sh” 28 minutes ago Exited (0] 10 minutes ago flamboyant_edison
6a3f4a2d36gy ubuntu "sh” 29 minutes ago Exited (0] 28 minutes ago friendty wilson

PROCHER-M- 34938~ parminderkochers il

Figure 7.29 Container renamed successfully

Now we can use this new name to run various other commands instead of
using HexID. See Figure 7.30.

PKOCHER-M-343H:~ parminderkochers docker togs Parminder

s ls

bin boot dev etc home lib IibEY media mnt opt proc root run sbin srv sys tmp usr war
PROCHER-M-3Y43H:~ parminderkochers i

Figure 7.30 New name all set to run other commands

Docker Copy

The docker cp command enables us to copy files between a container and the
machine on which the container is running. The following pattern copies a file
from the container to the local machine:

Click here to view code image

docker cp [OPTIONS] CONTAINER:SRC PATH DEST PATH

The following pattern copies a file from the local machine to the specified
container:

Click here to view code image

docker cp [OPTIONS] SRC PATH|- CONTAINER:DEST PATH

Let’s run the first command on our Ubuntu container. Figure 7.31 shows the
sample.txt file we’ll use for this example.
& pwd
[uar
als -a

backups cache lib local lock log mail opt run sample.txt spool tmp
ey |

Figure 7.31 sample.txt file we will use

Parminder is the container name from the previous example, so following is
the command to copy the file (see Figure 7.32):

Click here to view code image

docker cp Parminder:/var/sample.txt

PKOCHER-M-343%:~ parminderkochers docker cp Parminder:{uar/sampte.txt .
PKROCHER-M-343H:~ parminderkochers |s

Applications Downloads Public

Box Sync IdeaProjects Root
Cloudera-Admin-test-UM Learning Scala VirtualBox UMs
Cloudera-Admin-test-UM.zip Library Whiteboard.ucf
Cloudera-Training-GetcECe-UM-1.1-vmware-1.1 Movies eclipse
Cloudera-Training-Get2EC2-UM-1.1-umware-1.1.2ip Music myGitProject
Desktop MyDocker sample.txt
Oockerfile MyJabberFiles target
Oocuments Pictures

PKOCHER-M-343k:~ parminderkochers I

Figure 7.32 Copying a file from the Parminder container to the local machine

Now let’s try the command for copying from the machine to the container.
Here we use an example file called Myfile.txt on the local machine, as shown in
Figure 7.33.

PKOCHER-M-343K:~ parminderkochers touch MyFile txt
PKOCHER-M-343K:~ parminderkochers Is

Applications Downloads Pictures

Box Sync ldeaProjects Fublic
Cloudera-Admin-test-Um Learning Scala Root
Cloudera-Admin-test-UM.zip Libirary VirtualBox UMs
Cloudera-Training-Get2EC2-UM-1.1-umware-1.1 Movles Whiteboard.ucf
Cloudera-Training-Get2EC2-UM-1.1-umware-1.1.zip Music eclipse
Desktop MyDocker mybGitProject
Oockerfile MyFile.txt sample.txt
Documents MyJabberFiles target

PKOCHER-M-343H4:;~ parminderkochers Il

Figure 7.33 Copying Myfile.tx from the machine to the container

The following command copies this file to the container called Parminder and
in the /var directory, as shown in Figure 7.34; recall that Parminder is the
container ID from the previous example:

Click here to view code image

docker cp MyFile.txt Parminder:/var

pwd
fuar
uls -3
MyFile.txt backups cache lib local lock log mail opt run sample.txt spool tmp
Y |

Figure 7.34 Copying Myfile.tx from the local machine to /var directory inside
container named Parminder

Docker Pause/Unpause

The docker pause command suspends all processes in the specified
containers:

Click here to view code image
docker pause CONTAINER [CONTAINER...]
On Linux, this command uses the cgroups freezer. The docker unpause

command gets the container running again:

Click here to view code image

docker unpause CONTAINER [CONTAINER...]

Let’s run the pause command on our Ubuntu container, as shown in Figure
7.35; recall that Parminder is the container name from previous examples:

docker pause Parminder

PKOCHER-M-3493%:~ parminderkochers docker pause Farminder

Parminder

PROCHER-M-3493K:~ parminderkochers docker ps -2

CONTAINER 10 IMAGE COMMAND CRERTED STRTUS FORTS NAMES
e02085c7batl wbuntu “sh” 13 minutes ago Exited [0] 1B minutes ago vibrant_saha
e5I0f8e7E3tc ubuntu “sh” 23 hours ago Up 16 minutes [Paused] Parminder
eded3539719¢c ubuntu “sh” 23 hours ago Exited [0] 23 hours ago flambayant_edison
BaJFda2dIcan ubunty “sh” 23 hours ago Exited [0] 23 hours ago Friendly wilson

PROCHER-M-3434:~ parminderkochers I
Figure 7.35 Running the docker pause command on our Ubuntu container
We have just paused the container, effectively pausing all the processes within.

Try running a command inside the container, and you’ll see something like
Figure 7.36.

|5
|

Figure 7.36 Attempting to run a command inside a paused container

Let’s unpause it, as shown in Figure 7.37:

docker unpause Parminder

PKOCHER=M-343K:~ parminderkochers docker unpause Parminder

Parminder

PKOCHER-M-343%.~ parminderkochers docker ps -2

CONTRINER 1D IMAGE COMMAND CAEATED STATUS PORTS NAMES

e02085c?batl ubunty “sh” 2¢ minutes ago Exited [0] 21 minutes ago vibrant_saha
e510fBe?63fc ubuntu “sh” 23 hours ago Up 19 minutes Parminder
eded35359719¢ ubuntu “sh” 23 hours ago Exited [0] 23 hours age fHlamboyant_edison
Ba3f4a2d36ay ubunty “sh” 23 hours ago Exited [0] 23 hours age friendly_ wilson

PROCHER-M-343K:~ parminderkochers |

Figure 7.37 Unpaused container

We have just unpaused the container, so all the process are again running. Our
hung 1s command that was in the wait state also finished executing, as shown in
Figure 7.38.

als
MyFile.txt backups cache lib local lock log mail opt run sample.tkt spool tmp
ey |

Figure 7.38 Hung 1s command, previously in wait state, now got executed

Docker Create

The docker create command creates a new writeable container layer over
the specified image and prepares it for running the specified command:

Click here to view code image

docker create [OPTIONS] IMAGE [COMMAND] [ARG...]

The container ID is then printed as a result. This command is a little different
from running docker run -d in that the container is never started. You can
then use the docker start command to start the container. The ability to
create a container but delay starting it is handy when your IT team wants to set
up a container configuration in advance so that it is ready to start when you are
ready to go live.

Let’s create a new container, as shown in Figure 7.39:

docker create -t -i fedora bash

PKROCHER-M-343K:~ parminderkochers docker create -t -l fedora bash

Unable to Find image ‘Fedora:latest” locally

latest: Pulling from library/fedara

1b39378e2bd3; Pull complete

Digest: sha256:8d3f6492aa4dIfaBfIde52abledbbbeBbc2YI98Y3dctebb2bcabSBdbBBBeSaR
Status: Downloaded newer Image For Fedora:latest
239caellb3cFd35d3FBE2IFBrabSatbedf3bed363e4e21S7 de?e T2 365654F
PKOCHER-M-343K:~ parminderkochers docker ps -a

COMTAINER 1D IMAGE COmmAND CRERTED STATUS PORTS NRMES
2339caellb3ck fedora “bash” 18 seconds ago Created sleepy_euclid
e020B5c?ba?l ubuntu “sh" 3l minutes ago Exited [0] 30 minutes ago vibrant_saha
e510FBe?adfe ubunty “sh” 23 hours ago Exited (0] 42 seconds ago Parminder
eded35359719¢ ubunty “sh” 23 hours ago Exited [0) 23 hours ago flamboyant_edison
Ba3fiagd3E34 ubuntu “sh” 23 hours ago Exited [0] 23 hours ago friendly wilson

PROCHER-M-343K:~ parminderkochers [

Figure 7.39 New container created

Notice the container is created but not started.

Docker Commit

The docker commit command is straightforward but important—it allows
you to create a new image from the container’s changes:

Click here to view code image

docker commit{Options] Container [Repository:Tag]

As you make changes to your container and want to ship it as a new image to,
say, another development or test team, this command creates a new image for
you from the running container.

Docker Diff

The docker diff command is self-explanatory, but it’s another important
command—it lists the changed files and directories in a container file system:

docker diff Container ID

Over time, as you make changes to your container, this command highlights
the file system differences relative to the base image.

Dockerfile

Let’s build the same MySQL container we used in the previous examples on top
of Ubuntu OS using a Dockerfile. As we discussed earlier, the Dockerfile is
basically a set of instructions or commands that Docker can execute to build an
image. It is similar to a text file and can be created without any programming
language knowledge. It has simple commands that you can use with very simple

syntax.
There is a simple format that you need to learn here:

» The Dockerfile must always start with the FROM instruction that specifies the
base image to start with. Use # in the beginning of the line for comments.
FROM instructions do support variables, and for that reason, the only
instruction that can precede FROM instruction is the ARG instruction. Here’s
an example:

Click here to view code image
ARG OS VERSION=14.04
FROM Ubuntu:$ {OS_VERSION}

* The syntax is Instruction Arguments.
* Every instruction is executed sequentially from top to bottom.

» The Dockerfile and the associated files in this directory are sent to the
Docker daemon. For that reason, and to keep the size of your image light, do
not store nonessential files in this directory.

Here are some of the simple instructions you can use in a Dockerfile:

» ADD copies the file(s) from the specified source on the host system or a URL
to the specified destination within the container.

* CMD executes the specified command when the container is instantiated.
There can be only one CMD inside a Dockerfile. If there’s more than one CMD
instruction, then the last appearing CMD instruction in the DOCKERFILE will
be executed.

* ENTRYPOINT specifies the default executable that should be run when the

container is started. This is a must if you want your image to be runnable or
you use CMD.

* ENV sets the environment variables in the Dockerfile, which then can be used
as part of the instructions—for example, ENV MySQL ROOT PASSWORD
mypassword.

* EXPOSE specifies the port number where the container will listen.

* FROM specifies the base image to use to start the build image. This is the
very first command, and a mandatory one in the Dockerfile.

* MAINTAINER sets the author information in the generated images—for
example, MAINTAINER pkocher@domain.com.

* RUN executes the specified command(s) and creates a layer for every RUN
instruction. The next layer will be built on the previous committed layer.

* USER sets the user name or user ID to be used when running the image or
various instructions such as RUN, CMD, and ENTRYPOINT.

* VOLUME specifies one or more shared volumes on the host machine that can
be accessed from the containers.

* WORKDIR sets the working directory for any RUN, CMD, ENTRYPOINT,
COPY, or ADD instruction.

MySQL Dockerfile

Now that we understand the Dockerfile, let’s build one for a MySQL container
on top of Ubuntu OS. Use the editor of your choice (Vi, Pico, etc.) and create a
new file called Dockerfile. Add the following instructions:

Click here to view code image

From ubuntu:14.04

Maintainer pkocher@domain.com

Run apt —-get update

Run apt -get -y install MySQL-server
EXPOSE 3306

CMD ["/usr/bin/MySQLd safe"]

Save the file and exit. Notice we are starting from the base image of Ubuntu
version 14.04. The RUN command apt —-get -y install downloads the
MySQL package and dependencies and installs it. The EXPOSE command
exposes port 3306 where the container will listen.

Finally, the docker build command starts the MySQL process in the same
mode:

docker build [Options] Path/URL

This command builds an image from the specified Dockerfile and the context.
Context means the specific location for other resource files. Context can be
specified by a path directory or a URL to the GitHub repository.

You should always pass the —t option with docker build to tag the image

mailto:pkocher@domain.com
mailto:pkocher@domain.com

so it is easily identifiable. A simple, easily readable tag will help you manage the
images.

Let’s build the MYSQL image using the Dockerfile we created, as shown in
Figure 7.40—make sure you name the file Dockerfile; there is nothing else in the
same directory:

docker build -t pkocher/MySQL

Parminders-MacBook-Pro:MyDocker parminderkochers docker build -t pkocher/mysql .

Sending build context to Docker daemon 3.072 kB

Step D : FROM ubuntu

---» 3le54dfbilvg

Step 1 : MAINTAINER pkocher@gmail.com

---» Running in ff60156730fd

---» 0dd3dbBf7983

Removing intermediate container FF601S6730fd

Step 2 : RUN apt-get -y install mysql-seruver

---» Running in feG6f48d526af

Reading package lists ...

Building dependency tree ...

Heading state information ...

The following extra packages will be installed:
libaiol libdbd-mysql-perl libdbi-perl libhtml-template-perl libmysglclient]B
libterm-readkey-perl libwrap0 mysgl-client-5.5 mysql-client-core-5.5
mysql-common mysql-server-5.5 mysgl-server-core-5.5 psmisc tepd

Suggested packages:
libclone-perl libmldbm-perl libnet-daemon-perl libplrpe-perl
libsql-statement-perl libipc-sharedcache-perl tinyca mailx

The following NEW packages will be installed
libaiol libdbd-mysql-perl libdbi-perl libhtml-template-perl libmysqglclientl8
libterm-readkey-perl libwrapd mysgl-client-5.5 mysgl-client-core-5.5
mysqgl-common mysgl-server mysgl-server-5.5 mysql-server-core-5.5 psmisc tepd

0 upgraded, 15 newly installed, 0 to remove and 0 not upgraded.

Need to get 9153 kB of archives.

After this operation, 37.0 MB of additional disk space will be used.

Get: 1 http://archive.ubuntu.com/ubuntu/ trusty/main libaiol amd64 0.3.109-4 [636Y4 B]

Get: 2 http://archive.ubuntu.com/ubuntu/ trusty/main mysql-common all 5.5.35+dfsg-lubuntul [14.1 kB]

Figure 7.40 Building the MYSQL image

Notice in Figure 7.41 that Docker builds starting from the first instructions and
goes sequentially. Each instruction is built once and cached.

Setting up libhtml-template-perl [2.95-1] ...
Setting up tcpd [7.6.9-25] ...
Processing triggers for ureadahead [0.100.0-16] ...
Setting up mysql-server [5.5.35+dfsg-1lubuntul] ...
Processing triggers for libc-bin [2.19-0ubuntub.B] ...
---» 0Be9a?c04cyf
Removing intermediate container fe6f48d526af
Step 3 : EXPOSE 3306
---» Running in lae5e57cBlice
---» 2e9d44165b70
Removing intermediate container laeSe57cBice
Step 4 : CMD fusr/bin/mysqld_safe
--=» Running in a03f3a5bc33e
---» aeg67abf00Be
Removing intermediate container a03f3aSbc33e
Successfully built ae267abf008c
Parminders-MacBook-Pro:MyDocker parminderkochers 1l

Figure 7.41 Docker instructions built sequentially and cached

You can try rebuilding the same Dockerfile again, and basically nothing will be
rebuilt, since nothing changed. Try it by executing the same command.

Once the build is complete, you have created the image that you can check into
your repository. Let’s confirm:

docker images

As you can see in Figure 7.42, the pkocher/MySQL image is ready.

Parminders-MacBook-Pro:MyDlocker parminderkochers docker images

REPOSITORY THG IMAGE 10 CRERTED VIRTUAL SIZE
pkocherfmysagl latest BefSceb3d3ge About a minute ago 318.1 me
mysqgl latest 3726f?3Bal37a 2 weeks ago 324.3 MB
ubuntu latest Sle54dfbll?3 B weeks ago 188.4 mB

Parminders-MacBook-Pro:MyDocker parminderkochers I

Figure 7.42 The pkocher/MySQL image now ready

Now, let’s run this image and validate that it does what it is supposed to do, as
shown in Figure 7.43:

Click here to view code image

docker run -d -p 3306:3306 pkocher/MySQL

Parminders-MacBook-Pro:MyDocker parminderkochers docker run -d -p 3306:3306 pkocher/mysql
5063c4bedb663ef217b65b870c]26c308e522el22e392bE54Y7edlae22B83B0Y19
Parminders-MacBook-Pro:MyDocker parminderkochers g

Figure 7.43 Running the pkocher/MySQL image

Recall that in our Dockerfile we have one CMD that is supposed to bring up the
MySQL server. Let’s confirm:

docker ps

As you can see in Figure 7.44, our image is up and running.

Parminders-MacBook -Pro:MyDocker parminderkochers docker ps
CONTRINER 1D IMAGE COmMmAND CREATED STRTUS PORTS NRAMES
S063cHbedEES pkocher/mysql “fusr/bin/mysqgld safe” 36 seconds ago Up 35 seconds 0.0.0.0:3306- 3306 tcp modest_euclid

Parminders-MacBook-Pro:MyDocker parminderkochers |

Figure 7.44 Image up and running

Let’s go a little deeper to confirm more accuracy by running some queries.
First, we’ll use the exec command to execute bash on this container, as shown
in Figure 7.45; notice that 5063c4bed669 is the container ID from the previous
commands:

docker exec —-it 5063c4bed669 bash

Parminders-MacBook-Pro:MyDocker parminderkochers docker exec -it 5063cdbedBE9 bash
root@5063cYbedBE9: [+ 1

Figure 7.45 Using docker exec command to execute bash

Let’s get inside MySQL and run some queries to confirm further that
everything is up and running, as shown in Figure 7.46:

Click here to view code image

Command: mysqgl

show databases;

connect information schema
show tables

root@5063c4bedBE9:/+ mysaql

Welcome to the MySOL monitor. Commands end with ; or \g.
Your MySOL connection id is 2

Server version: 5.5.35-1ubuntul [Ubuntu)

Copyright (c] 2000, 2013, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;’ or '\h' for help. Type \c’ to clear the current input statement.

mysqgl: show databases;

i Database |
i information_schema j
| mysql [
| performance_schems |

3 rows in set [0 .00 52::]

mysql> connect information_schema
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Connection id: 3 :
Current database: information_schema

mysql> show tables
_:.;

| Tables_in_information_schema |
| CHRRACTER SETS

| COLLATIONS

| COLLATION CHARACTER_SET APPLICABILITY
| COLUMNS

| COLUMN PRIVILEGES

| ENGINES

| EUENTS
I

I

I

I

I

I

I

FILES

GLOBAL STATUS
GLOBAL URRIABLES
KEY COLUMN USAGE
PARAMETERS
PRRTITIONS
PLUGINS

Figure 7.46 Confirming that everything is up and running properly

Docker Compose

Applications using Docker are typically multicontainer applications. That is,
they have components (e.g., app, web, database) that are deployed in multiple
Docker containers. To simplify the definition of multicontainer applications, as
well as to run them in an easy way, Docker introduced Docker Compose.

Let’s assume we want to spin up an application that consists of Tomcat and a

MySQL database. Here’s how we can capture these two services in a docker-
compose.yml file.

Click here to view code image

version: '2'
services:
tomcat:
image: 'tomcat:7'
container name: appserver
ports:
- '8080:80"
depends_on:
- db
db:
image: 'mysgl:5.7'
container name: dbserver
ports:
- '3306:3306"
environment:
- MYSQL ROOT PASSWORD=sample
- MYSQL DATABASE=helpdesk
- MYSQL USER=helpdesk
- MYSQL PASSWORD=helpdesk

Docker Compose uses YAML (YAML Ain’t Markup Language) file. (You can
read up about YAML at http://www.yaml.org.) Docker Compose uses it for
configuration, but YAML can be used in many other types of applications as
well.

In the docker-compose.yml file, we have defined two services: Tomcat and
MySQL. Services configuration options are self-explanatory at this stage. One of
the key things to note is that Tomcat service has an option called depends on
in its configuration, and it has db as a dependency. This instructs Docker to start
the database service first and Tomcat second. Docker Compose has many more
options that you can explore yourself from Docker online documentation.

Having defined the docker-compose.yml file, the way to start the services is to
use the following command.

Command: docker-compose up —-d

This command inspects the compose file, then finds out the services defined in
the configuration file, builds a dependency graph on the order in which services

http://www.yaml.org

need to be started, and finally starts them in that order. If the image configured in
the services section is not located in the local machine, then it fetches the image
from the Docker registry as usual. Figure 7.47 shows the output from running
the command.

lelakshm [remove) $ docker-compose up -d

Creating network “remove_default” with the default driver
Pulling db [mysql:5.7] ...

5.7: Pulling from library/mysql

3b43b3b313ch: Pull complete
4fbbB03665d0: Pull complete
05808B66e6F3: Pull complete
1dBc65d48cfa : Pull complete
el83e187b2b5 : Pull complete
02d3eB0lleed : Pull complete
d43b32d5ce0d: Pull complete
2a803168ab45: Pull complete
Digest: sha256:1a2f3361228e3bl0bYc?7a651b460828519845de?ac51735b919c2cYaecBbYb?
Status: Downloaded newer image for mysgl:5.¢7
Fulling tomcat [tomcat:?] ...
7: Pulling from library/tomcat
B5bIf47fba49 : Riready exists
babbd2B3713a : Pull complete
braatdbe37e5: Pull complete

: Pull complete

: Pull complete

: Pull complete

: Pull complete

: Pull complete
00c3060b4e32: Pull complete
Fd2?456F3bae : Pull complete

i : Pull complete

: Pull complete
Digest: sha256:3ca30lc5c37cdbB58332d18badBe?037d5743a5el4e077026adfaldbYc354dYe
Status: Downloaded newer image for tomcat:?

lelakshm [remove)

lelakshm [remove] 5

lelakshm [remove] 5 docker ps

CONTRINER 10 IMAGE COMMAND CARERTED STATUS PORTS NAMES
cfe2334933cyr tomcat:? “catalina.sh run” About a minute ago Up About a minute 8080/tcp, 0.0.0.0:8080->B0/tcp appserue
2dacBfebf786 mysql:5.7 “docker-entrypoint..” About a minute ago Up About a minute 0.0.0.0:3306-»3306/tcp dbserver
lelakshm [remove] s 1

Figure 7.47 Running Docker Compose

As you can see in the figure, since the Tomcat and MySQL images are not
available locally, they were pulled from the repository before they were started.
Another key thing to note is that, since MySQL is marked as a dependency for
Tomcat, MySQL was downloaded and subsequently started first before the
Tomcat service was started.

This concludes our discussion on Docker commands. These commands will
continue to evolve, so keep yourself up to date by reviewing Docker online
documentation.

Chapter 8
Containers Networking

In the previous three chapters, we learned the basics of containers and how
Docker takes containers to the next level. But simply standing up containers
does not serve a purpose: the containers need to talk to each other, and
connectivity with the external world must be designed as part of your
deployment. In this chapter, we discuss and learn about networking options in
the world of containers. First, let’s refresh our knowledge of some basic concepts
in Linux that will assist our discussion of containers networking.

Key Linux Concepts

Containers, as we know, are self-contained and isolated virtual environments.
They can run an entire application or part of an application. In either case, one of
the key needs is connectivity.

We have been using a client to connect to our containers, but what we need is
global connectivity. We need connectivity between containers within a host,
within multiple hosts, and between multiple data centers—that is, we need the
ability to create our own network. Docker uses the Linux networking and kernel
features to provide such capabilities.

We don’t go into much detail on Linux basics, but you must understand some
key Linux networking concepts to understand Docker networking:

* Linux network namespace. Usually, a Linux installation provides a
standard set of network interfaces and routing table entries. This set is used
by the entire operating system to make the routing and networking possible.
Think of network namespace as a network stack with its own network
interfaces and respective routing table entries operating in isolation. Docker
uses this feature of network namespace to isolate containers and provide the
security. You can have multiple network namespaces, giving you the ability
to run each container in isolation, rendering each one unable to communicate
with other containers on the same host until configured by the admin. The
host has its own namespace that contains host interfaces and routing tables.

* Linux bridge. This is part of the Linux kernel module and enables Linux
networking. Think of it as a layer 2 virtual switch that also does filtering. It
makes forwarding decisions based on a MAC address table that it learns
dynamically through the traffic inspection.

* Linux virtual Ethernet devices. Also known as veth (virtual Ethernet)
devices, these are interfaces that connect the network namespaces. We can
create multiple entries on the network namespace stack, and we configure the
veth to establish the connectivity. Think of these as pipes that can connect
network namespaces to each other and to the external network.

 Linux iptables. iptables is part of the Linux kernel that provides the packet
filtering and firewall capabilities to the operating system. You can define
policies and a chain of policies to allow or block traffic. Docker utilizes this
capability to segment traffic between containers, implement port mapping
where you can bind the container port to the host port, and more.

Now that we’ve outlined Linux networking capabilities, let’s discuss
connection types in containers, starting with the simplest: linking.

Linking

Before Docker released advanced networking features (which we discuss
shortly), the simplest way of connecting two or more containers was to “link”
the containers. The --1ink flag, now a deprecated legacy feature of Docker,
allows containers to discover and secure a connection for transfer of information
between containers. This technique is more of a generic way to achieve
connectivity than a true ports-based networking approach. It is done through
sharing environment variables and /etc/hosts file entries, which are automatically
created for us by the Docker engine to connect the containers.

As an example, let’s bring up the Tomcat application server and a MySQL
database and establish connectivity between them. These two should be able to
interact with each other. Let’s get the latest Tomcat image, shown in Figure 8.1,
by executing the following command:

docker pull tomcat

[ANUJSIN-M-T2HS:pkocher anujsing docker pull tomeat

Using default tag: latest

latest: Pulling from library/tomcat

9f0706bary2e :
d3g4y2arvy2dez:
£b935a7bcBbfy:
7bd307cbebe?:
ba?daBb01135
74169d04cfOd
0BccDe234332:;
def5746beydd :

Full complete
Full complete
Full complete
Full complete

: Pull complete
: Pull complete

Pull complete
Pull complete

ebl09ae0YB806 :
99ac3eaiicee:
£4772bcBSbY9:
03774cef0B0c :
B673b4Y3967afd :
Ja49ady?38F1 : Pull complete

Digest: sha256:c55cB49d34bB2d794298bb7eeBc?0f52f3dfedlbd34106394b2bc39edb02I6FIE
Status: Downloaded newer image for tomcat:latest

ANUJSIN-M-T2H9:pkocher anujsins il

Full complete
Pull complete
Pull complete
Pull complete
Pull complete

Figure 8.1 Latest Tomcat image pulled

Next, we start our Tomcat container; we’ll call it tomcatContainer:

Click here to view code image

docker run -d -- name tomcatContainer tomcat

To make sure our container is up and running, we use

docker ps

Figure 8.2 shows that it is running!

[ANUJSIN-M-T2HS:pkocher anujsing docker ps

CONTARINER 1D IMAGE COMMAND CREATED
90d4a06e!80e tomcat:latest “catalina.sh run” 4 minutes ago
ANUJSIN-M-T2HI:pkocher anujsing I

STATUS
Up 4 minutes

PORTS
BOBO/tcp

NAMES
tomcatContainer

Figure 8.2 Tomcat container is running

Now let’s bring up our MySQL container and link it with our Tomcat container
using the --1ink flag:

Click here to view code image

docker run --link tomcatContainer:tomcat --name sqglcontainer \

> —-e MYSQL ROOT PASSWORD=password -d mysgl

It should pull the MySQL if it’s not available locally, as shown in Figure 8.3.

ANUJSIN-M-T2H3:prometheus anujsing docker run --link tomcatContainer:tomcat --name sglcontainer -e MYSOL
AOOT_PRSSWORD=password -d mysgl

Unable to find image ‘mysql: latest’ locally

latest: Pulling from library/mysql

Sr0?06ba?y2e :

£290el55d2d0

55e3122Fl2gry
abcl0bdBY060
c0aSceByf2b0

J00caSfabeea

Already exists

: Pull complete
S5479BIbERESF :
2cdycedefus :

Pull complete
Pull complete

: Pull complete
: Pull complete
: Pull complete
c4595eabBel0:
038386cead3s:

Pull complete
Pull complete

: Pull complete
43fdcYe3eb30 :

Pull complete

Digest: shac56:d1?BdffbabdBlafedc25149B8ece?607939636e062CBac63d56b72FIedece?lab
Figure 8.3 MySQL pulled

Let’s confirm these two containers are linked as specified. First, log into the
MySQL container by executing the following command:

Click here to view code image

docker exec —-it sqglcontainer /bin/bash

Next, check the hosts file located at /etc/hosts:

cat /etc/hosts

Notice in Figure 8.4 that we do have an application server container entry
along with its IP address of 172.17.0.2.

[root@fB6YfEeYIS0f: [«

[root@fB6YfEeYIS0f:f«

[root@fB64YfEeY1S0f:/+ cat [fetc/hosts

127.0.0.1 localhost

| localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet

FFOD::0 ip6-mcastprefix

Ff02::1 ip6-allnodes

Ff02::2 ip6-allrouters

172.17.0.2 tomcat 90d4a06el90e tomcatContainer
172.17.0.3 fBE4f6e4150f

root@fB64f6eq1S0f:f= I

Figure 8.4 App server entry and IP address displayed

Let’s validate the IP address of the Tomcat container by opening another
terminal, as shown in Figure 8.5:

Click here to view code image

docker inspect TomcatContainer | grep IP

ANUJSIN-M-T2H3:~ anujsing
ANUJSIN-M-T2HI:~ anujsins docker inspect tomcatContainer |grep IP
"LinkLocallPvERddress”: "",
"LinkLocallPvEPrefixLen”: 0,
"SecondarylPAddresses”: null,
"SecondarylPuEAddresses”: null,
"GloballPvERddress":"",
"GloballPuEPrefixlen”: 0,
"IPAddress™: "172.17.0.2"
"IPPrefixlen”: 16,
"IPuBGateway": "",
"IPAMConfig”: null,
"IPAddress”: "172.17.0.2",
"IPPrefixLen”: 16,
"IPubGateway”: "",
"GloballPubRddress"™: "",
"GloballPuGPrefixLen”: 0,
ANUJSIN-M-T2HI:~ anujsins I

Figure 8.5 Tomcat’s IP address
Note that the IP addresses 172.17.0.2 matches with what we found in the host
file, which means everything is in place to establish connectivity. Let’s test that

by pinging the Tomcat container from the MySQL container. Go back to your
previous terminal and issue this command:

ping 172.17.0.2

Figure 8.6 shows us the connectivity was a success!

[root@fB6YFEeYIS0f: [«

[root@fBBYFEe41SOf:/+ ping 172.17.0.2

PING 172.17.0.2 [172.17.0.2): 56 data bytes

B4 bytes from 172.17.0.2: icmp_seq=0 ttl=64 time=0.190 ms
B4 bytes from 172.17.0.2: icmp_seqg=| ttl=64 time=0.109 ms
B4 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.114 ms
64 bytes from 172.17.0.2: icmp_seq=13 ttl=64 time=0.083 ms
64 bytes from 172.17.0.2: icmp_seq=4 ttl=64Y time=0.125 ms
64 bytes from 172.17.0.2: icmp_seq=5 ttl=6Y time=0.103 ms
64 bytes from 172.17.0.2: icmp_seq=6 ttl=6Y time=0.105 ms
“C--- 172.17.0.2 ping statistics ---

7 packets transmitted, ? packets received, 0% packet loss
round-trip minfaug/max/stddev = 0.083/0.119/0.190/0.031 ms

Figure 8.6 Connectivity success

Default Options

Because the ——11nk flag has been deprecated and may eventually be removed,
its use should be avoided. In place of --1ink, Docker provides three default
connection options, which are all created automatically during installation: none,
host, and bridge. Run the following command to list these networks:

docker network 1s

You should see the output shown in Figure 8.7.

[ANUJSIN-M-T2HS:~ anujsin$ docker network |s

NETWORK 1D NAME ORIVER SCOPE
fe3118460338 bridge bridge local
HaBecl6F3a4? host host local
1bb6d34233c none null local

ANUJSIN-M-TEHI:~ anujsins i

Figure 8.7 Network list

Let’s look into each of these networks.

None

This networking option is the simplest of all and basically means no networking.
It does receive a container-specific stack and namespace, but it lacks a network
interface. Consequently, no IP address is configured for this container, and
cannot connect with other containers or an external network. It does have a

loopback address assigned.
As an example, let’s use our Tomcat image again by specifying the network
option none:

Click here to view code image

docker run —-it --network=none tomcat /bin/bash

Let’s check out the IP address of the container:

Click here to view code image

docker inspect 43cl0fe289b3| grep IP

As expected, no IP address is assigned, as shown in Figure 8.8.

ANUJSIN-M-T2H3:~ anujsing
ANUJSIN-M-T2H3:~ anujsing
ANUJSIN-M-T2H9:~ anujsins docker inspect 43cl0fe283b3 |grep IP
"LinkLocallPvERddress”: "",
"LinkLocallPuEPrefixLen”: 0,
"SecondarylPAddresses”: null,
"SecondarylPuEAddresses”: null,
"GloballPvERddress™:"",
"GloballPuEPrefixLen”: O,
"IPAddress™: "",
"IPPrefixLen”: O,
"IPubGateway”: "",
"IPAMConfig”: null,
"IPAddress”; "",
"IPPrefixLen”: O,
"IPubGateway”: "",
"GloballPubAddress"™: "",
"GloballPuGPrefixLen”: 0,
ANUJSIN-M-T2HI:~ anujsins i

Figure 8.8 No IP address assigned

As you can see, this particular container is completely isolated from other
containers and the host network. This kind of configuration is used for testing
purposes in isolated environments, special custom networking, or instances
where no connectivity is intended.

Host

As the name suggests, the host option adds the container to the host’s network

namespace, so the host and the container share the same network namespace we
discussed earlier. This is the second simplest of the networking options: the
added container can use all the interfaces on the host stack. In this case, there is
one-to-one port mapping between the container and the host machine—that is, if
you run the container on an application server on port 8080, the application
server will be available on port 8080 of the host.

There are two key things to note here: you will still need to do network
configurations, and in this mode you cannot use port mapping. The reason is that
the container and the host share the same network namespace. If another service
wants to use port 8080, you are stuck. This may not be the case with the bridge
option, which we discuss in the next section.

Let’s run a new CentOS image by specifying the network option host:

docker run --network=host -d centOS

Next, we validate that the container is running, and we log into it, as shown in
Figure 8.9.

Click here to view code image

docker ps
docker exec -it kickass minsky /bin/bash

[[root@eml ~]= docker ps

CONTAINER 10 IMAGE COMMAND CRERTED STATUS PORTS NRMES
9fa5e2l6dB56 centos *fbin/bash” 50 seconds ago Up 49 seconds kickass minsky
[[root@cml ~]= docker exec -it kickass_minsky [binfbash

[root@cml f]= 1

Figure 8.9 Logging into our CentOS container

Looks good so far. Let’s find the IP address of our CentOS container:

ifconfig | grep inet

Notice in Figure 8.10 that the IP address of our container is 10.88.30.156.

[[root@cml ~]+ ifconfig [grep inet
inet 10.88.30.156 netmask 255.255.255.128 broadcast 10.88.30.255
inetE 2001:420:1902:2033:21d:3ffF:febd:5aea prefixlen 64 scopeid 0x0<global=
inetE feB0::21d:9fF.fe6d:5aea prefixlen 64 scopeid Ox20<link:
inet 172.17.0.1 netmask 255.255.0.0 broadcast 0.0.0.0
inetE feB0::42:bcff:fe2d.eelb prefixlen 64 scopeid Ox20¢<link
inet 127.0.0.1 netmask 255.0.0.0
inetk ::1 prefixlen 128 scopeid 0xl0<host:
[root@eml] ~]« §

Figure 8.10 Check for containers’IP address

Now we open another terminal and find our host machine’s IP address:

Command: ifconfig | grep inet

The result, shown in Figure 8.11, is what we would have expected: the
container has the same IP address as the host: 10.88.30.156.

[root@cml []«
[root@cml /]« ifconfig |grep inet
inet 10.88.30.156 netmask 255.255.255.1268 broadcast 10.88.30.255
inet6 2001:920:1902:2033:21d:9ff:febd:5aea prefixlen 64 scopeid 0x0<global:
inetb feB0::21d:9¢f:fe6d:5aea prefixlen 64 scopeid 0x20«<link>
inet 172.17.0.1 netmask 255.255.0.0 broadcast 0.0.0.0
inetb feB0::42:beff:fecl:eelb prefixlen 64 scopeid 0x20«link>
inet 127.0.0.1 netmask 255.0.0.0
inetb ::1 prefixlen 128 scopeid 0xl0<hosts
[root@eml []= 1

Figure 8.11 Checking for our machine’s IP address

Basically, this particular container networking behaves just as if it were a
physical server, which actually gives it the key benefit: performance—that is,
near-metal speed. Figure 8.12 shows how it looks.

Container 1 Container 2

Eth0:172.0.0.1 Eth0: 172.0.0.2

veth599876 veth599879

DockerQ: 172.17.42.1
I

Eth0: 192.168.1.22

|_VL

Network

Figure 8.12 Host networking

Bridge

Bridge, also known as docker0, is the default networking option if you don’t
specify any parameter (none or host) with your run command. Don’t confuse
this with Linux bridge, which we discussed earlier, though Docker uses it to
provide this bridge networking functionality.

As you probably guessed from the name, bridge creates an internal private
network for containers to communicate with each other. Note that the IP
addresses assigned in this case are not accessible from outside the host. You
must expose the ports to provide the external access. To understand more, let’s
run the following command:

docker network inspect bridge

As you can see in Figure 8.13, the containers section is empty, since we have
no containers running.

ANUJSIN-M-T2HI:~ anujsins docker network inspect bridge

[
{

"Name": "bridge”,

"I0": "fe31184603381ba3602670fedecf4B8458fb057b6FfF7BELEI2530c5ad?3F5hbbb”,

“Created”: "2017-07-08T19:08:03.016505706Z",
"Scope”: "local”,
"Oriver”: "bridge”,
"EnablelPuB”: false,
"IPAM": {
"Oriver”: "default”,
"Options": null,
"Config": [
{
"Subnet”: "172.17.0.0/16",
"Gateway": "172.17.0.1",

]

],

"Internal”: false,

"Attachable”: false,

"Ingress”: false,

"ConfigFrom": {
"Netwaork™: ""

3

"ConfigOnly”: false,

"Containers”: {},

"Options”: {
"com.dockernetwork.bridge.default bridge”: "true”,
"com.dockernetwork.bridge.enable_icc”: "true”,
"com.dockernetwork.bridge.enable_ip_masquerade”: "true”,
"com.docker.network.bridge.host_binding_ipu4”: "0.0.0.0",
"com.dockernetwork.bridge.name”; "docker0",
"com.docker.network.driver.mtu™; "1500"

%

"Labels": {}

]

Figure 8.13 Containers section empty

Let’s start a few containers by specifying a bridge parameter in one
leaving the other default:

Click here to view code image

and

docker run -d --network=bridge mysqgl
docker run -d --network=default tomcat

Now let’s run the inspect command again and notice the difference:

docker network inspect bridge

As you can see in Figure 8.14, both containers are connected through the same
bridge and communicate with each other by IP addresses.

“"Name": "bridge",
“Id": “fe31189609981ba8602670feYdel FYRY58FbO05706FF786be2550c5ad73f5bbb",
“Created": "2017-07-08T19:08:03.0165057062",
“Scope”: "local”,
"Oriver”: "bridge”,
“EnablelPub”: false,
“IPRAT": {
“Oriver”: “default”,
“Options": null,
“Config": [
{
“Subnet”: “172.17.0.0/16",
“Gateway": "172.17.0.1"
/
]
1
“Internal”: false,
“Attachable”: false,
“Ingress”: false,
“ConfigFrom": {
“Network": ""
7
“ConfigOnly": false,
“Containers”: {
"09c?ae5are?3b2Y3672362927244122b82ell4d45e63291a260847caB634add8"
“Name": "wonderful kalam”,
“Endpointill’:
"30ad3acchd03119dc03a236207Fdblaadqe3fI3697dFI80ce343181e2d2bOIF?",
“MacAddress”: " 02:492:ac:11:00:03",
“IPuYAddress”: “172.17.0.3/16",
“IPv6Address": "
}
“3IcO05687068a7db53de33919al2edbb5915e5el4fd26c8316d629d849392Y?d328" :
“Name": "blissful babbage”,
“Endpointifl":
“Id365a32d1aealcede00d35edd0?9FIcfBd293006dd66863320010272820c5ael",
“MacAddress”: "02:92:ac:11:00:02" ,
“IPudAddress”: “I72.17.0.2/16",
“IPy6Address": "
J
1
“Options”: {
“com.docker.network.bridge.default_bridge”: “true”,
“com.dockernetwork.bridge.enable_icc”: “true" ,
“com.dockernetwork.bridge.enable_ip masquerade”: “true”,
“com.docker.network.bridge.host_binding ipuvd”: *0.0.0.0°,
“com.dockernetwork.bridge.name”: “dockerl’,
“com.docker.network.drivermtu”: “1500°
1
“Labels": {}

Figure 8.14 Containers connected through the same bridge, communicating with
each other by IP addresses

You can attach to each of these containers and see what the network looks like
from inside the containers by running the attach command and then
ifconfig, as we did earlier (see Figure 8.11). You can ping Container 2 from
within Container 1 to test the connectivity. So the question is, what is happening
in the backend to enable this bridge and connectivity?

Well, Docker is using the basic Linux networking to do this magic. All the
containers created through the bridge parameter or without any networking
parameters are all connected to this bridge (dockerO) and are therefore able to
talk to each other. Docker puts all the necessary entries in the /etc/hosts/ file
(iptables and the like) to make this work. Figure 8.15 shows how it all looks:

Container 1 Container 2

Bridge

e

Network

Figure 8.15 Bridge networking

Custom Networks

In addition to the three default networks included when you install Docker, you
can define custom networks to control connectivity. Docker provides network
drivers that you can utilize to create these custom networks. Creating a custom

network gives you full control and flexibility, as you will learn in this section.
We discuss the following three most commonly used custom networks: custom
bridge network driver, overlays network driver, and underlays (MACVLAN)
network driver.

Custom Bridge Network Driver

The custom bridge driver is very similar to docker0, which we discussed earlier,
but has more features, such as IPAM (IP address management) and service
discovery. It also provides more flexibility.

To create a custom bridge network, we use the following command:

Click here to view code image

docker network create [OPTIONS] NETWORK

We can specify an IP address and subnet in the command if required, or
Docker will assign the next subnet available in the private IP space. Let’s
execute this command:

Click here to view code image

docker network create --driver bridge pkNetwork
Let’s use 1s again to verify:
docker network 1s

The pkNetwork we just created is shown in Figure 8.16.

ANUJSIN-M-T2HS:~ anujsing
ANUJSIN-M-T2H3:~ anujsing
ANUJSIN-M-TEH3:~ anujsing docker network Is

NETWORK 10 NAME ORIVER SCOPE
fe31184960338 bridge bridge local
133b7c28febe docker gwbridge bridge local
di63cabfeBaa dockerservices_default bridge local
YaBecl6F3a4? host host local
ufSdrEl?stoa ingress overlay swarm
1bb6d34233c0 none null local
33edfEbBd0de pkNetwork bridge local

ANUJSIN-M-T2HY:~ anujsing

Figure 8.16 List networks

Just as we did with dockerO, let’s inspect this new network:

docker network inspect pkNetwork

Look at Figure 8.17 and note the driver we used, bridge. This is our custom
bridge network.

ANUJSIN-M-T2H3:~ anujsing docker network inspect pkNetwork
[
{
“Name": "pkNetwork"”,
“Id"; "33edfbbBd0del433a2d?dfdebv62clbEYce59aeBb3Baarcarlas?26552dBeddy”,
“Created”; "2017-07-08T21:59:15.8214098562",
“Scope”; "local”,
“Driver”: "bridge”,
“EnablelPuB": false,
“IPAM": {
“Oriver”; "default”;
“Options™: { },
“Config": [
{
“Subnet”: “172.20.0.0/16",
“Gateway": “172.20.0.1"

]
L

“Internal”; false,
“Attachable”: false,
“Ingress”: false,
“ConfigFrom”: {
“Network": *

"

}

W

ConfigOnly”: false,
“Containers”: { },
“Options™; { }.
“Labels™ { }

]
Figure 8.17 Custom bridge network

Currently, there are no containers built into this network. As in the
bridge/docker0 example, we can create a few containers by specifying the
network as pkBridge and then inspect the network to see the association.
Behind the scenes, Docker creates the necessary configuration in the underlying
Linux to make this work.

Port Mapping

With Docker, as we discussed earlier, containers on the same network can
communicate with each other. Of course, that is the purpose of the putting the
container on the same network. But the external access is firewalled—that is,
containers cannot be accessed from the outside world unless access is explicitly
granted to make the external connectivity possible. This is achieved by internal
port mapping whereby we bind the container port to the host port within the
Docker run command. We can also use a combination of the exposing and
publishing commands to first expose and then publish all the exposed ports to
the host interfaces.

Consider the following example:

Click here to view code image

docker run -d --network pkBridge -p 8000:80 --name tomcatPK -d tomcat

We can access the Tomcat server externally from the browser, as shown in
Figure 8.18.

e | D ur00enos € O suvioL Do ROOT MSSwoRD fr D 4 & D@ B

Home Documentation Configuration Examples Wikl Mailling Lists Find Help

Apache Tomcat/8.5.16 J rencHe

Recommaended Reading: Server Biatus
L curity Consideraticns HOW-TO

% Spcurity Considoraticng HOW-TO Massgr App

J/ k A =
£y IVl o) TR S PO VRATYY ") S

Host Managar

Erecal Soaciationy
Tomniat Versiong
Managing Tomcat Documentation Gatting Help
For seciy. pecows b the masiost webdoo i+ Tomcat 8.5 Documentation EAQ and Mailing Lists
redanclad. Lhsids dre defined in Tomeat 8.5 Configuration Tru fodowing maiking 1ass. am mvalatio:
BEATAL o
|t announce
I TRt BLS B b thi FSnasse w = mpariant anmountementy, releates, sesurity
applcation i spil bobween difenent s Fasel agdnonsl impariant Sonfiguaton VAR NORICation. (Lo voluma)
sl e Lo wmcnsen
BCNTALINA, RONE(NPSNIN0 Lt e wgpart a0l datuined
Boloaso Motes . .
Derilcpars miry B ntiroited mﬂdwwh! Tt
GRananiog Yo B 5 Bug Duiabane e
Dpvpicpmant maikng b, inghdng SommE menages
Secyrity Notices Toemecan .5 5N Bapontiory

Figure 8.18 Accessing Tomcat server externally via the browser

So, what is happening here? On the backend, the Docker engine adds a NAT
(network address translation) rule in the Linux iptables. Take a look at the
underlying iptables. You should see the mapping entry in the list.

As you may have noticed, the bridge driver is a local scope—that is, it is
limited to a single host. The other two network drivers, overlay and underlay,
address the multihost scope.

Overlay Network Driver

The overlay driver is utilized to achieve the containers’ connectivity across
multiple hosts. It does this by decoupling the container network from the
underlying physical layer and creating a tunnel across the hosts to enable
communication. Think of it as one network spread across multiple hosts, and all
the containers on this particular network are able to communicate just like within
a single host. Figure 8.19 shows the network.

@ N £ Y i

OV-NET 1 [OV-NET 1 } OV-NET 1
L% A
| | I I I I I I |
Eth0 EthO Etho | [emo| [emo| [Emol ETIERED Etho
Ci cz VXLAN-VNI 100 C9
ETH1 ETH2 ETH9
| | I I I I I I |
docker_gwbridge docker_gwbridge docker_gwbridge
=) . ™ 'd B
iptables : iptables : iptables :
NAT / port-mapping NAT / port-mapping

\ NAT / port-mapping

: Y ¥ P N 4

ToR switch / Hypervisor switch / ...

Figure 8.19 Overlay network

Note that the container on this particular overlay network won’t be able to
communicate with the other containers even on the same host unless they are on
same overlay network.

Docker uses VXLAN (virtual extensible LAN) as the tunneling technology.
Just as we created the bridge network, we can create the overlay network by
specifying the subnet. Docker automatically instantiates the required settings
(Linux bridge between hosts along with associated VXLAN interfaces) for
connectivity on each host.

Docker is smart enough to create these settings only on hosts where this
container connectivity is required. This prevents the existence of each overlay
network on all the host machines, a key feature of Docker containers that
addresses microservices’ distributed deployment and connectivity needs.

Docker Swarm
In practice, you will have a cluster of Docker engine nodes running your
application services. Docker Swarm provides cluster management and
orchestration. Each Docker engine running on a node runs in the swarm mode.
One of the key features is multihosting networking, which Docker Swarm
provides through the overlay network driver we just discussed. When a service is
created that uses an overlay network, the manager node of the swarm
automatically extends the network to other nodes that are part of this service.
Docker Swarm is not the only way to manage clusters. Several other open
source technologies, such as Kubernetes and Mesos, are available. In such cases,
the overlay network requires a valid key-value store service to store necessary
information such as discovery, endpoints, IP addresses, and the like. Support
key-value stores include Consul, Zookeeper, and etcd, among others.

Underlay Network Driver or Macvlan

A media access control virtual local area network, or Macvlan, is another built-in
network driver that is very lightweight and is simpler than other drivers. It does
not use the built-in Linux bridging and port mappings; instead it connects the
container’s interface directly to the host interfaces (ethO or a sub-interface).

Basically, these are all virtual interfaces behind one host’s single physical
interface. With this approach, each virtual interface has unique MAC and IP
addresses. This enables the containers to communicate directly with external
resources without the need for NATing and port-mapping, which makes this
driver more efficient than other alternatives.

Like overlay networks, Macvlan networks are segmented from other networks.
Containers that live on the same host but not on this network cannot talk to each
other. Figure 8.20 shows this underlay network.

cl c?2 ¢3

A Host 1 A

c4

cl c2 c3

A Host 2 A

c4

MAcVLan MAcVLan
Ty ""--..______._______...-“"
eth2.70 eth2.80 eth2.70 eth2.80
Y Y
MNetwork 1
L X
Metwork 2

Figure 8.20 Macvlan network

As you can see, Docker is pretty flexible when it comes to networking. If your
needs are more complex and cannot be addressed by the options we discussed,
you can write your own network driver plugin or use readily available plugins
such as Weave Net or Flannel.

Chapter 9

Container Orchestration

Managing a handful of containers is completely different from managing
production-scale containers, which may number in from hundreds to thousands.
To support container management, we need an easy way of deploying and
handling these containers at scale. This is what is called container orchestration.
In this chapter, we look into a few of the options available in the industry and
cover the basics of how each inherently works. Container orchestration is a fast-
changing area, so look at the provided links for the latest developments once you
understand how these technologies work and the key differences between them.

The good news is that there are many options in the container orchestration
space. The flip side, of course, is that determining which tool is the best fit for
your environment will not be an easy decision. Here are several of the popular
options that are being used extensively in the industry:

» Kubernetes
* Mesos + Marathon

* Docker Swarm

We cover these options throughout the next several sections.

Kubernetes

Kubernetes is an open source project led by Google. Google has extensive
experience in managing and deploying containers at scale. Kubernetes is one of
the orchestration engines that helps you run your containerized applications
where and when you want by providing the resources and capabilities they need,
as shown in Figure 9.1.

Let’s look at the major components of this orchestration engine.

Master Node

Té:ﬁ;l 'S API Server > .

’ J
- Replication - ' i
Controller Scheduler

Kube Proxy

G0N G 0N
e e B

Pod Pod Pod Pod
Worker Node 1 Worker Node 2

))

Figure 9.1 Kubernetes’s major components

Kubectl

Kubernetes has a command-line interface called kubectl. It is used for running
commands and interacting with Kubernetes clusters.

Master Node

The master is the brain of Kubernetes. It coordinates the cluster activities with
the help of some supporting services. It has an API server, a scheduler, and a
replication controller. They manage all activities—scheduling and maintaining
applications’ desired state, scaling up and down, and so on.

API Server

The API server is responsible for exposing Representational State Transfer
(REST) APIs to interact with the Kubernetes cluster. All external
communications that happen between the client (kubectl) and the Kubernetes
cluster is handled by the API server. Additionally, cluster-wide communications
between worker nodes and the master is also handled by the API server. This is
also the only component that talks to the distributed key-value store (etcd) to
store the state of the objects.

In Kubernetes terminology, we use objects to describe what we want from the
cluster or what state we want the cluster to be in. For example, an object could
be the applications you want to run in the cluster, how many instances of the
application you want in the cluster at any given time, or how you want your
applications to communicate with each other.

Let’s take an example of how the API server handles requests. Say we issue a
command to run a Tomcat container and have three instances of Tomcat running
in the cluster:

Click here to view code image

kubectl run myTomcat --image=Tomcat --replicas=3

What happens behind the scenes is that kubectl submits our “intent,” or
request, to run three instances of Tomcat server in the cluster to the API server.
The API server then works with the scheduler and replication controller
components to execute our request and brings the cluster to the desired state.

Scheduler

Kubernetes scheduler is a component that is responsible for placing (scheduling
to run) the containers in the cluster nodes. It does this by creating pods, the basic
units of scheduling in Kubernetes. You can imagine a pod as a logical host with
separate namespace where one or more containers live. All the containers live
inside a pod and share a pod’s namespace.

When a request is submitted to the Kubernetes API server, the API server
works with the scheduler to place the pods in the cluster nodes. Before placing a
pod on a worker node, the scheduler checks various criteria:

* Which nodes have sufficient resources, such as CPU and memory, to run the
containers in the pod

» Whether the node has sufficient ports open, as requested by the pod

» Where to place the pod such that it is close enough in the cluster to avoid
latency issues (node affinity)

» Whether the pods are distributed in the cluster to support high availability

As you can see, the scheduler has to make a smart, informed decision about
where to place the pods in the cluster. And that is one of the Kubernetes
scheduler’s key responsibilities. It reads data from the pods that describe the
pod’s policies (required amount of CPU, memory, high availability needs, node

affinity, etc.) and runs its own algorithms to arrive at a best possible node to
place the pod.

Here’s a typical process that the Kubernetes scheduler goes through before
making a decision on where to place a given pod:

1. Scheduler reads the pod’s needs in terms of resources, node affinity, and so
on, and inspects the list of available nodes by pulling the information from
the etcd database. It carefully filters out any node(s) that does not meet the
pod’s policies / requirements at that time.

For instance, let’s say a node has 12G memory and is running a pod that is
already using 8G RAM. The leftover memory in this node is 4G. If the
scheduler is looking for a node that has at least 8G RAM to schedule a pod
to run, then this node will be excluded, as it does not have the required
amount of RAM to run the given pod.

2. Nodes that got past step 1 are analyzed carefully by Kubernetes. It follows a
set of criteria to choose the best one from a list of qualifying nodes. For
example, if an application has two pods, A and B, you don’t want both to be
scheduled to run on the same node because if that node goes down, then it
may affect the application availability, especially in the case of
microservices.

Another example would be replication. Here you don’t want pod replicas to
be scheduled on the same node for the same reason (impacts availability).
Many such policies are taken into account before Kubernetes comes up with
the best possible node on which a given pod should be scheduled to run.

3. Once the best node is selected, the scheduler schedules the pod to run on the
chosen node.

Kubernetes is a very pluggable architecture. If you need a better scheduler to
fit your business or organizational needs, you can plug in your own scheduler.

Replication Controller (Controller Manager)

The replication controller’s job is to ensure that the intended or desired number
of pod replicas are running in the cluster at any given time. Let’s say we request
Kubernetes to run three instances of the Tomcat container in the cluster.
Kubernetes creates three pods and schedules it to run in the cluster. It goes
through the scheduling process and picks up the best nodes to run those three
pods. Now suppose one of the nodes that runs the Tomcat pod dies for some

reason. This introduces a delta between the desired number of pods we want
running in the cluster and the actual number of pods running. Given this delta,
the replication controller will kick in and request the Kubernetes scheduler to
spin up another instance of the Tomcat pod somewhere in the cluster along with
all the other pods running on that machine.

Additionally, let’s say you don’t need three instances of the Tomcat pod
running in the cluster. Maybe your application’s time has passed and you want to
cut down on the resources because you are expecting less traffic. You may run
the same command with an adjusted number of pods replicas:

Click here to view code image

kubectl run myTomcat --image=tomcat --replicas=2

The replication controller will again kick in and kill the excess pods, one in
this case, running in the cluster to maintain the desired state.

Worker Nodes

Worker nodes are where the pods are scheduled to run. An agent called kubelet
runs inside each worker node. Kubelet serves as the single point of contact for
each worker node. It is responsible to get “work” from the master node and
execute the work in the worker node. Work here is the pod or pods that need to
be executed in the worker node. Typically, the scheduler component in the
master node uses an API server to provide pod details to kubelet. After receiving
the work from the master node, it ensures that the pods are successfully launched
in the nodes.

Kubelet is also responsible for reporting both the status of the node—its health,
resource availability, and so on—and the status of each pod running in the node.
Kubelet stores these statistics in the etcd database via the API server. This data,
available in the etcd database, serves as the source for the scheduler to decide
which nodes are available (as well as what resources are available in each node)
for scheduling a pod. This data is also leveraged by the replication controller to
decide whether the desired number of replicas for a service are running in the
cluster. If the desired number of replicas are not running the cluster, then it steps
in to match the desired state.

Pods

Kubernetes pods are dynamic. In other words, they are created as needed; they
can be moved to another node because of a node failure, they may be scaled up
by the replication controller to handle more traffic, or they can be scaled down to

conserve some resources. Let’s discuss this topic with a concrete example to
make it clear.

Example: Kubernetes Cluster

Let’s assume that we have three instances of MySQL pods running in our
Kubernetes cluster as shown in Figure 9.2.

Connect to MySQL database

Consumer 2

MySQL
Service

Y Y Y
POD 1 POD 2 (POD3)
Label: app=MySQL Label: app=MySQL Label: app=MySQL
Port: 3306 Port: 3306 _ Port:3306 |

POD 4
Label: app=Apache

MNode 1 Node 2 Node 3

' oy
POD 5 POD 6
Label: app=Apache Label: app=Tomcat
. v

Figure 9.2 Three MySQL pods running in our Kubernetes cluster

Pods can have metadata to describe itself. In the figure, you can see that the
MySQL pods have a label, app=MySQL, and a port, 3306. You see that Pods 1,
2, and 3 are all tagged or labeled exactly the same way. By doing this, we are
creating a logical set of “related” pods that offer a service collectively in a
cluster. In this case, those three pods are offering a database service to its
consumers.

Let’s run through a traditional three-tier application use case in which an
application server such as Apache Tomcat (Consumer 1) is trying to pull data
from the MySQL database. The consumer’s challenge with a microservices
architecture is knowing where the MySQL pod is. The nodes on which the
MySQL pod live are not static, as we saw earlier. The challenge, then, is locating
these pods reliably and being able to communicate with them. That’s where
Kubernetes Services comes into the picture.

Kubernetes Services form an abstraction layer that provides a single point of
entry for client requests through a related set of pods. In other words, we could
say that a service front ends a bunch of related backend pods. This is a very
powerful abstraction, because now the location of the backend pods becomes
irrelevant to the consumers. Consumers can simply reach out to the service, and
each service has a virtual IP address and a port that does not change for the
lifetime of the service. In short, Kubernetes Services enable communication to a
collection of related pods by keeping track of what pods make up a service.

Plenty of documentation is available to help you install and configure
Kubernetes: https://Kubernetes.io. The purpose of covering these topics here is
to explain the concepts. You should always refer to the latest online
documentation for installation and configuration.

Apache Mesos and Marathon

Apache Mesos is an open source containers orchestration framework that is
proven to work well in large-scale production environments. Mesos is like an
operating system kernel that manages resources in a cluster of machines. It
works in a master/slave-based architecture. By itself, Mesos manages only the
cluster resources; it’s the job of the frameworks, which sit atop Mesos, to
schedule tasks in the cluster. There are many frameworks available, the best
known of which include Marathon, Hadoop, and Chronos. We focus on
Marathon in this chapter.

The Mesos architecture consists of masters, slaves (or agents), and
frameworks, as shown in Figure 9.3. Let’s look at the major components that
make up Mesos.

https://Kubernetes.io

Marathon Framework Chronos Framework

Pl ’ Zookeeper
Quorum

@

Master

Executor 1 Executor 1

a @ a
B (I

Executor 2 Executor 3

Executor 1

Mesos Agent Mesos Agent Mesos Agent

Figure 9.3 Mesos architecture

Mesos Master

The Mesos master daemon runs on a master node. This daemon is responsible
for managing the agent daemons running on each cluster node; that is, the master
daemon is the one that provides work (tasks) to the agent daemons. The master
daemon is also responsible for serving frameworks that consume services
(computing power such as CPU, memory, network, disk resources) from the
Mesos cluster. Any number of frameworks can run on top of the same Mesos
cluster. Frameworks are the entities that bring in tasks to be run in the Mesos
cluster. Tasks the frameworks want to run in the cluster get to the agent nodes
through the master and get executed on the agent nodes.

The job of the Mesos master is to enable sharing of cluster resources such as
CPU and memory to the frameworks that are waiting to run their tasks. It does
this by sharing the cluster resources in what are called offers in the Mesos world.
Offers contain details such as amount of RAM and number of CPU cycles
available to execute a task. The offers are sent to the registered frameworks, and
the frameworks have complete freedom to accept or reject them.

Offers are nothing but a way for a Mesos master to let the registered
frameworks know of available resources in the cluster. As an example, an offer
can include details such as “12G memory, 8 core CPU cycles are available to be
used.” A framework that receives an offer inspects the offer received and the
tasks in hand to be executed. If the task can be executed by using the offer
received, then the framework accepts it; otherwise, the offer is rejected.

The fact that any number of frameworks can consume resources from the same
Mesos cluster introduces challenges such as which framework gets what
percentage of resources from the cluster. Mesos handles resource allocation
elegantly by making it completely configurable through policies that can be
defined. It’s up to the cluster administrator to define how many resources are
allocated to a given framework based on organizational priorities and/or the
criticality of the tasks that a given framework may run in the Mesos cluster.

Agents

Agents are the worker nodes where the actual tasks run. A slave daemon runs on
each of the worker nodes. This daemon is responsible for collecting and
reporting statistics to the Mesos master.

Say your machine has 8GB RAM and 4 core CPU cycles available. This
information will be sent from the agent to the Mesos master, which forwards the
offers upstream to the registered frameworks. Tasks that the frameworks request
actually run in these worker nodes. Agents get the work (task to execute) from
the Mesos master. Once they receive the task, they launch the task inside an
executor.

An executor is simply a process or a container that can execute shell
commands or Docker containers and other processes. Mesos provides simple
executors that can execute shell commands and Docker containers; however,
most frameworks, such as Marathon, ship with their own executors, which offer
more capabilities than the ones that come with the default Mesos executor.

Frameworks

Frameworks are the consumers of cluster resources. As we saw earlier, Mesos by
itself only manages the cluster’s resources; it is the frameworks that run the tasks
in the cluster. Frameworks have two major components: the scheduler, which
registers itself with the Mesos master and is responsible for looking at an
incoming offer and making a decision whether to accept or reject it; and the
executor, which actually runs the tasks in the agents. If the frameworks choose

not to provide their own executor, they can use the default executor that comes
with Mesos.

Example: Marathon Framework

Let’s say we want to deploy three instances of a catalog microservice. Here is
how we would describe this requirement and hand it off to Marathon:

Click here to view code image

{

"id": "catalog-svc",

"cpus": 0.5,

"mem": 8.0,

"instances": 3,

"container": {

"type": "DOCKER",

"Docker": {

"image": "helpdesk/catalog-svc",
"network": "BRIDGE",
"portMappings": [
"containerPort": 80, "hostPort": 80, "protocol": "tcp"}

{
]
}
}
}

Notice your Docker networking knowledge coming in handy here. According
to this JSON, we need three instances of the catalog microservice running in the
cluster. The container section explains what type of container we need—in this
case, the Docker container. That section also explains what image will be used
inside the Docker container as well as the ports that need to be exposed. In
addition to all of these details, this file also explains how much memory and
CPU are required for each container instance.

Here’s how we can submit this JSON file to Marathon, assuming this JSON
file is saved as application.json:

Click here to view code image

curl -X POST http://hostip:port/v2/apps \
-d @application.JSON \
-H "Content-type: application/JSON"

When we hand this off to Marathon, Marathon waits for offers from the Mesos

http://hostip:port/v2/apps

master (note that Marathon does not store offer history). As soon as it receives
an offer that fulfills the request, it hands off the request to Mesos so that the
executor process inside the agent can launch these containers. Recall that we
instructed Marathon to launch three instances of the catalog microservice. If for
any reason that cluster does not have three instances of the catalog microservice,
Marathon will work with Mesos to spin up additional containers to ensure three
instances are always running in this cluster.

It is easy to scale up or scale down the instances running in the cluster. It is a
matter of submitting a new JSON file with the required number of instances. For
details on installation and configuration, refer to the Mesos project online at
https://mesosphere.com.

Docker Swarm

Docker Swarm is a native container orchestration engine from Docker itself.
Swarm is simply a group of machines (Docker engines) running Docker
containers with swarm mode turned on. Swarm effectively manages the cluster
by instructing the cluster nodes to run containers. Let’s look at the main
concepts.

Nodes

A node, in simple terms, is a Docker engine that’s part of the Swarm cluster. The
cluster has worker nodes as well as Swarm manager nodes. Swarm manager
nodes are the brain of the Swarm cluster. They are responsible for managing the
Swarm cluster by instructing the worker nodes to execute containers.

The manager is not deployed as a single node; rather, multiple nodes are
typically deployed in odd numbers such as three, five, and seven to avoid being a
single point of failure. Manager nodes run what’s called a raft consensus
algorithm to “elect” a single leader. In the event a leader goes down, one of the
followers will be elected as a new leader, thus avoiding disruption or any kind of
a system failure.

Services

A service is simply a definition of what needs to be executed in the cluster
nodes. A service definition consists of the following:

* Image to run in the container

* Any commands that need to be run inside the container

https://mesosphere.com

* Replicas or number of instances of the running container

Task

Task is the basic unit of scheduling in Swarm. It contains the Docker container
and the commands that need to be run in the container. When the Swarm
manager gets a request to spin up a service, the service simply indicates which
container is to be launched and the number of instances that need to run in the
cluster. The manager node then assigns the task (container to launch and
commands to run in the container) to the worker nodes and lets the worker nodes
launch those containers. It also ensures that the desired number of replicas
(instances) are launched in the cluster.

As end users, we simply mention our intent or the desired state of an
application, and it’s the job of the Swarm manager to ensure the desired state of
the application is achieved and maintained.

Example: Swarm Cluster

Let’s get our hands dirty and take a look at how to create a simple Swarm
cluster. The good news is that there’s no additional software setup required for
Swarm as long as you have Docker installed. As of this writing, Docker’s latest
version is 17.06, and that’s what we’ll use to explore Swarm.

Swarm Cluster Setup

In this example, we set up a two-node Swarm cluster (one manager, one worker).
On the node that we want as Swarm manager, we run the following command to
initialize a Swarm cluster:

Click here to view code image

docker swarm init --listen-addr 10.88.237.217:2377

In this command, 10.88.237.217 is the interface IP address of the machine
where the command is executed, and 2377 is the default port on which the node
listens for Swarm manager traffic.

As you can see in Figure 9.4, the command has initialized a Swarm cluster.

[root@swarm-master ~]# docker swarm init --listen-addr 10.88.237.217:2377
Swarm initialized: current node [ckmtounajpf0BpglhuBjerlou) is now a manager.

To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-60v0219bgi4Boeimlhbby3Shuseveudredz39obklzzceazwy3-EhlckdBShgtifuwurlu3jedy |
10.88.237.217:2377

To add @ manager to this swarm, run ‘docker swarm join-token manager’ and follow the instructions.

Figure 9.4 Swarm cluster initialized

At this stage, there are no worker nodes in the Swarm cluster. All we have is
the Swarm manager. Let’s list the nodes in the Swarm cluster to quickly see what
nodes are there:

docker node 1s

As you can see in Figure 9.5, the Swarm master is the only node in the cluster.

[root@swarm-master ~]= docker node Is
10 HOSTHNAME STATUS RURILABILITY MANAGER STATUS

ckmtounajpf0EpglhvBjeriou * sWwarm-master Aeady Active Leader

Figure 9.5 Swarm master is only node in the cluster

To add a worker node to this Swarm cluster, we go to a node that has Docker
running and run a swarm Jjoin command to participate in the Swarm cluster:

Click here to view code image
docker swarm join --token <tokenID> 10.88.237.217:2377
As you can see, to make a node a worker node, all you have to do is run the

swarm join command to provide the master’s IP and port details, as shown in
Figure 9.6.

[root@swarm-workerl]s docker swarm join |
--token SWMTKN-1-60v0219bgidBoeimlhbby3Shuseueudredz9lobklzzceazwy3 -6hlckyB5hgtifuwgurluldjedy |

3 10.88.237.217:2377
This node joined a swarm as a worker.

Figure 9.6 The swarm join command providing master’s IP and port details

Now let’s look at the nodes participating in the cluster:

docker node 1s

You should now see one manager and one worker node in the Swarm cluster,
as shown in Figure 9.7.

[root@swarm-master ~]= docker node Is
[[1] HOSTNAME STATUS AURILABILITY MANAGER STRTUS

ckmtounajpf06pglhuBjeriou * swarm-master Ready Active Leader
pBeYlftcudgOugicxffgScnff linux-dev.localdomain Ready Active

Figure 9.7 One manager and one worker node in Swarm cluster

Service Creation

To create a Tomcat service in Swarm and deploy it in the cluster, all we have to
do is first establish what image should be used in the container and then how
many instances (replicas) are needed to run in the cluster.

In Figure 9.8, you can see that we start with a clean slate with no running
containers (indicated by docker ps -—a returning O entries in the first line).
We then create a service by passing in the Docker image (tomcat : 7.0,
which is already in the repository) and asking Swarm manager to create just one
instance (indicated by ——replicas 1).

[root@swarm-master ~]» docker ps -a

CONTRINER 1D IMAGE COMMAND CRERTED STATUS
[root@swarm-master ~|=

[root@swarm-master ~]= docker images

AEPOSITORY TRE IMARGE 10 CREATED SIZE
tomcat 7.0 FBe333bddab 6 days ago 357mB
[root@swarm-master =]«

[root@swarm- r ~]= docker service create --name TomcatService --replicas | tomeat:?.0
s7g73pnmeike PnjdmnlFnwp8o

Since --detach=False was not specified, tasks will be created in the background.

In a Future release, - -detachsFalse will become the default.

[root@swarm-master ~]«

IMAGE COMMAKD CREATED STATUS PORTS HAMES
tomcat:7.0 “catalina.sh run® 5 seconds ago Up 3 seconds B0B0ftcp TomcatService.l.thor

rim-master ~J«
[root@swarm-master ~]= docker service Is
10 HRME MODE AEPLICRS IMRAGE
s7gidpnmeike TomcatService replicated 1 tomcat: 7.0

Figure 9.8 Starting with a clean slate

Once we pass in these parameters, we have the Tomcat instance spun up in the
cluster (indicated by docker ps -—a following the service creation
command). Finally, running docker service 1s is a quick way to list the
service that we just launched, which indicates that the service called
TomcatService is up and running and that the desired number of replicas are met.

Scale Up and Scale Down

First, scale up the service by asking Swarm manager to increase the number of
Tomcat replicas:

Click here to view code image

docker service scale service TomcatService=2

It’1] take a bit of time to launch the additional container in the cluster, as shown
in Figure 9.9.

[root@swarm-master ~]= docker seruice scale TomeatService=2

TomcatService scaled to 2

[root@swarm-master ~|=

[root®swarm-master ~]= docker seruice |s

10 NRME MODE REPLICAS IMAGE
sigrdpnmeiko TomeatService replicated /2 tomcat: 7.0

[root@swarm-master ~]=

[root@swarm-master ~]=

[root@swarm-master ~|s

[root@swarm-master ~]= docker seruice |s

1] NRME MmOoE REFLICAS IMAGE
sig7Ipnmeiko Tomcatservice replicated gle tomcat:7.0

Figure 9.9 Scaling up the service by asking Swarm manager to increase the
number of Tomcat replicas

Scaling down the service is as simple as running this command:

Click here to view code image

docker service scale TomcatService=1

For more details and latest configuration options, visit the online project page:
https://docs.docker.com.

Service Discovery

We have talked a lot about service discovery, but let’s take a step back and
understand what it is and why it’s critical. Simply put, service discovery is about
locating where a particular service is running—for example, “Where is service
X?” where X may be a database server, cache server, or any other application
server.

In the good old days, when we had physical machines to deploy our
applications, services running on machines used to be named appropriately to
represent the services running on them. For example, a database server for the
helpdesk application running on a physical machine would possibly be named
“helpdesk-db.domain.com.” Now when the client—say, an application server
such as Tomcat—wants to consume the database, it typically gets configured

https://docs.docker.com
http://helpdesk-db.domain.com

using properties or configuration files on the database server.

Yet when the need for quickly spinning up machines on the fly became
widespread, virtual machines (VMs) emerged. With VMs, what was once
difficult to do with physical machines, such as dynamically adding nodes to
handle additional load, became easy and very approachable. As a result, cloud
technologies became popular. Now, when we have multiple servers offering a
single service (e.g., a database cluster), how do the clients know which server to
talk to? They use a load balancer such as NGINX or HAProxy and configuring
the load balancer with the nodes representing a given service.

For example, let’s say we have a load balancer configured to balance the load
between two Tomcat servers. As the traffic increases, a new Tomcat VM may be
spun up; using scripts/automation, the load balancer will be updated to reflect
that a new Tomcat VM was added. With this new configuration in place, the load
balancer knows that an additional server representing a Tomcat service is in
place, and it can direct traffic to that instance. Client applications don’t need to
know that a new VM has been added to the Tomcat service, nor do they care
about details such as where that VM is running, its IP address, and so on. Client
applications continue to talk to the load balancer, which in turn abstracts the
changes in the Tomcat service (e.g., adding or removing nodes).

Fast-forward to today. We live in the era of containers and microservices. With
containers, the problem of discovering where a given service is located is going
to be more difficult than other cases. Containers can be both launched and killed
extremely quickly, and their location is not static, making it difficult for the
clients to know where a given service is located in the cluster. The good news is
that there are a good number of tools in the service discovery space that can be
leveraged according to our needs.

Before we look at the many tools available for service discovery, let’s
understand a couple of service discovery patterns. There are at least two ways to
do service discovery, depending on where it occurs:

* Client-side service discovery. Service registry is a tool or a database that
contains the list of all services, details about where those services reside (IP
address, port), and so on, as shown in Figure 9.10. The locations of the actual
services gets registered with the registry when these services come up.
Likewise, the entries in the registry are removed as these services are
terminated. Outside a service start or stop, some kind of a heartbeat
mechanism must be in place to ensure that the registered services are up and
healthy.

' "
Service A
(Instance 1)

-
.

(@ ™
Service A
(Instance 2)

Service B
(Instance 3)

Service A
(client)

Service B
(Instance 1)

Service B

(Instance 2)
p S———

Figure 9.10 Client-side service discovery

The major drawback of this approach is that the client has to know about the
service registry, which puts the responsibility on the client applications to
discover the services before they can communicate with the service.

* Server-side service discovery. In the case of server-side service discovery,
the client can directly send a request to an API gateway or a load balancer
and not worry about connecting to the right service. The load balancer does
the heavy lifting of managing the service registry, querying the registry to get
the location of services to handle incoming requests, and performing a load-
balancing operation across multiple instances of the service, as shown in
Figure 9.11. A classic example of this pattern is the popular Amazon ELB
(elastic load balancers).

With Amazon Web Services, let’s say we set up a four-node EC2 (Amazon
Elastic Compute Cloud) cluster for an application tier (Tomcat). In order to
split the traffic between these four EC2 Tomcat instances, we have to
add/register these instances to an ELB by providing details such as the
instance name, port on which the service is running, mechanism to be used to
ensure these services are healthy (ELB should be used for heartbeat/health
checks), and frequency at which the health check should happen. Once the

configuration is done in the ELB, the ELB does the heavy lifting of handling
the incoming requests and routing the requests to the appropriate Tomcat
instance.

' Service Registry _ N e |
ervice A

(Instance 1)
- J

Service A
(Instance 2)
—
Ty
Service B
(Instance 3)
—
e =)
Service B
(Instance 1)

Query registry for
a service location

()
Service B

(Instance 2)

O

(client) Send request to ,, ' Forwards the request
connect to service B to service B

Service A

Figure 9.11 Server-side service discovery

Microservices and service discovery go hand in hand. In fact, there are many
open source tools for service discovery, including Consul (HashiCorp),
Zookeeper (Apache), etcd, SmartStack (AirBnB), Eureka (Netflix), and
SkyDNS. These tools have a lot of capabilities in common. They are mainly
differentiated in terms of the footprint (light versus heavy) and protocols
supported to query services (DNS, HTTP/TCP, etc.).

Service Registry

Service registry is like a Yellow Pages for the microservices running in the
environment. It has details about where a given microservice is running in the
cluster (e.g., host and port). As we know, microservices can come up (new
instances may be spun up for scaling) or go down in the event of failure and
eventually may be restarted in another node. What this means is that their
location is not static—it may change. There are at least two different ways to
communicate the location of a given microservice to service registry:

» Self-registration. This a process by which a given microservice itself sends

its location information to service registry, as shown in Figure 9.12. For
example, Consul is a popular choice for service registry, and it exposes an
API to interact with it. With self-registration, each microservice will have to
interact with the Consul API to send its whereabouts. According to
microservices’ patterns and best practices, each microservice should focus on
a single concern—one piece of functionality. However, forcing the
microservices to send their location information to the service registry
violates the single-concern-responsibility pattern. For this reason, self-
registration is not a widely used option.

Micro
service
Send up/down events Send up/down events
Send up/down events Send up/down events
Micro Micro
service service

Figure 9.12 Service registry self-registration

» External tools, or third-party registration. Leveraging external tools for
service registry is the best choice for a simple reason: the microservices can
focus on their core responsibility and not worry about sending their location
information to a service registry. It’s a clear separation of concern; tomorrow,
if you want to change the way the microservices need to be discovered and
stored in the service registry, you can do it without touching the
microservices code.

Let’s see how a third-party registration would work in the same Consul
example previously discussed. Registrator

(https://github.com/gliderlabs/registrator) is an open source component that
serves as a bridge between service registry and Docker containers. It
automatically registers and deregisters services by keeping an eye on the Docker
containers as they come up and go down.

As a Docker container comes up or goes down, it fires off events
(notifications), and any third-party tool can subscribe to these events to take
appropriate actions. Registrator simply watches for these Docker events and, like
docker inspect, inspects those containers to see what services they
provide. It then communicates with any service registry tool (e.g., Consul, etcd,
SkyDNS2) and sends the information about the discovered service.

In Figure 9.13, you can see that Registrator is a component that’s installed on
all the worker nodes that run containers. It’s configured with a service registry
(which is where the actual information about the services running in in cluster is
stored) to which it sends information about the discovered services. As a
container is spun up or goes down in a given node, Docker fires off events, and
the Registrator component living in each node picks up those events and inspects
the containers to get additional information about the services.

Service Registry
(Consul, etcd, SykDNS2)

N

Registrator Registrator
Container 2 Container 2
MNode 1 MNode 2

Figure 9.13 Registrator installed on all the worker nodes that run containers

https://github.com/gliderlabs/registrator

This wraps up our deployment and discovery topics. We use this learning
extensively in dockerizing our project in Part III of the book.

Chapter 10

Containers Management

Now that we understand containers orchestration, scaling, and networking, let’s
talk about what happens when things go wrong. You will have potentially
hundreds to thousands of containers running in the production, and you need to
know how to manage them effectively and efficiently. To that end, our deep dive
into containers concludes by getting into the nitty gritty of container monitoring
and management that includes capturing logs, collecting resource metrics, and
using some cluster-wide monitoring systems. Let’s first understand the overall
monitoring aspect of containers and why it may be different from what already
exists in the market.

Monitoring

Monitoring an environment with containers is not difficult, but the speed,
quantity, and environment can make it so. Legacy-wise, the monitoring tools
market to monitor and manage physical hosts, network, and virtual machines has
matured. Containers are new; the marketplace is still in the process of solving
the monitoring problem. Containers monitoring is different because of the
following aspects and challenges:

* Deployment environment. An organization may run some containers
directly on physical infrastructures within its own data center and some
containers on virtual machines with a service provider such as AWS
Managed Service Partners, which adds little more to complexity in terms of
management.

 Scalability of containers. Whole applications can be run on a physical
machine or on few virtual machines. With containers, the best practices
dictate one service per container, and an application may consist of hundreds
to thousands of services, which means hundreds to thousands of containers.
In a microservices architecture, application scaling requires auto-shrinking
and auto-expanding the number of containers on the basis of changing needs.

* Velocity of change. Unlike physical hosts or virtual machines, the life

expectancy of a container may vary from a few seconds to several days.
When a task is finished, the container goes away.

* Various tools in use. Although containers provide speed and efficiency, they
throw simplicity out the window. Deployment, management, and discovery
of the containers involves a plethora of tools. For example, you may use one
of several containers orchestrators, such as Docker Swarm, Kubernetes, or
Mesos. You can specify the networking configuration, number of instances of
a container to spin up, and so on. The orchestrators then control the creation,
deletion, and management of the containers based on resource availability
within the hosts. Each time a new container is created, it gets a new IP
address. With all this going on, it becomes very hard to set up the overall
monitoring and collection of metrics.

* Distributed data. Data must be collected from the various tools and merged
at one centralized place to make sense of it and find potential issues. Docker
provides some capabilities to get these data and statistics to proactively
monitor the containers and overall system.

There are lot of vendor-specific options, and each has its own benefits. Docker
has recently launched the Ecosystem Technology Partner (ETP) program with
the companies that have integrated their monitoring tools with Docker through
APIs. You can search for such partners at https.www.docker.com.

Let’s begin the discussion with available logging and container metrics
collection. You can pull this data to your existing monitoring tools or build some
dashboards.

Logging

In a production environment that supports multiple applications on multiple
clusters with multiple copies of a running service, you may have a very high
number of containers running. Things do go wrong, and when they do, logging
becomes very important to troubleshoot the issues. For example, recall that with
microservices, we are talking about hundreds to thousands of microservices as
part of one typical large-scale application. Docker containers are well suited to
run such a high number of microservices because they offer the many
advantages we have discussed. The question is, how do we manage the logging
when each container is spitting everything that comes out of stdout and
stderr into the logs? How do we keep all these logs in sync and in a place that
makes troubleshooting straightforward and efficient?

Docker, once again, provides drivers that simplify our job. Each driver helps us
get the logging information from the containers and running services. They
differ in the way they provide and format the information and how they forward
it to different log processors. Example drivers include JSON, Syslog, Splunk,
Amazon CloudWatch Logs, and the like. We discuss these options thoroughly,
but for more details, refer to Docker online documentation.

At the time of writing, the following logging drivers are supported:

* json-file. The default logging driver for Docker daemon. Each container uses
json-file unless you configure the container or daemon to use a different
driver. The output log file is in well-understood JSON format.

* None. Turns off logging.

» Syslog. Sends the log messages to the syslog server installed locally or
remotely. As discussed earlier, you can modify the daemon.json file on the
host to set the log driver to syslog and specify options in the options section.
You can also do this at the container level. Syslog brings all the messages to
the same location, which helps in troubleshooting, but it is not sufficient to
deal with hundreds of containers, as in the case of microservices.

» awslogs. Sends the log messages to Amazon CloudWatch Logs. In this case,
set the log driver to awslogs and specify the required options.

* Splunk. Sends the log messages to Splunk using the HTTP event collector.
In this case, set the log driver to Splunk. Splunk-token and splunk-url are the
required options you must specify in the file or at the time of running the
container.

* Journald. Sends the log messages to the system journal. In this case, set the
log driver to journald. Log entries can be retrieved using journalctl or Docker
log commands.

* gcplogs. Sends the log messages to Google Cloud Platform logging where
you can search and analyze these messages. In this case, set the log driver to
gcplogs. You can also set several options to include more details in the
messages.

* GELF. Sends messages to Graylog Extended Log Format (GELF) endpoints
such as Logstash server. In this case, set the log driver to gelf along with
various options. GELF is extensively used as part of ELK (Elasticsearch,
Logstash, and Kibana).

As mentioned earlier, json-file is the default driver. You can check this by
running the following command:

Click here to view code image

docker info | grep 'Logging Driver'

You should see the result - Logging Driver: Jjson-file.
Let’s run an Ubuntu container and check the default logging:

docker run -it ubuntu:latest sh

Open another terminal, find the container ID, and copy it:

docker ps

Now run the following command to find the logging driver for our Ubuntu
container:

Click here to view code image

docker inspect -f '{{.HostConfig.LogConfig.Type}}' ec5e917eb9b0

You should see the result shown in Figure 10.1.

[root@linux-dev pkocher]s docker inspect -f ‘{{.HostConfig.LogConfig.Type}}’ ec5

ed17eb3b0

json-Ffile

Figure 10.1 Using docker inspect to find the logging driver for our
Ubuntu container

You can change the default logging driver at the daemon level or at the
container level. For the daemon level, you can modify the value of 1og-

driver in the daemon.json file located in /etc/Docker on the Linux host
machine. The structure looks like this:
Click here to view code image

"log-driver":

"log-opts":{ options like syslog server info, etc. }

For the container level, you can specify the logging driver during the run
command, as we’ll see in the next example.

Of course, another option is to turn logging off altogether. Let’s restart our
Ubuntu container with the none option and run the logs command again.

Click here to view code image

docker run -it --log-driver none ubuntu:latest sh

Let’s run a couple of commands at the sh prompt to create some log data, as
shown in Figure 10.2.

PS
PID TTY TIME CMOD
17 00:00:00 sh
B ? 00:00:00 ps
¢ l5
bin boot dev etc home lib lib6Y media mnt opt proc root run sbhin sru sys tmp usr war
¢

Figure 10.2 Creating log data

Now check the logs:

Click here to view code image

docker ps //Copy ContainerID
docker logs 73clb74d6091

You can see that there is no logging available, as it has been turned off for this
particular container. The subsequent containers have no impact because we
changed the setting at the container level.

Keep in mind that the container logging options we discussed do not account
for application or services messages that don’t pass messages through the
stderr and stdout streams. Also, some of these drivers rely on services
running on the host machine, which is a little risky.

Another thing to keep in mind is that as the number of containers grow within
your application, you will need a very sophisticated centralized logging system
that contains all the information starting from system data such as CPU and
memory to last-mile application performance data. So, when building the
application, you need to include proper tagging and tracking as part of your
code. This centralized logging system should include capabilities such as
filtering, indexing, categorizing, sorting, and searching to make application and
containers troubleshooting faster and easier.

Metrics Collection

In this section, we discuss metrics collection mechanisms that use the basic
utilities provided by Docker and some open source tools that you can use to

solve for monitoring given the complexity of your deployment. We start with
Docker Stats.

docker stats

The docker stats command provides you with live performance data for
the containers running on your host system at the given time:

docker stats [Options] [Containers]

You can provide container IDs for the specific containers you are interested in
or use the —a option for all containers. If you do not specify an option, Docker
presents you with all running containers.

Let’s execute this command:

docker stats

Figure 10.3 shows the result of the docker stats command, which returns
the resource usage statistics.

CONTRINER CPU% MEM USAGE f LIMIT MEM = NET I/D BLOCK 1/D PI0S
b4y8311B6FDdY 0.00% 1.98 MiB [47.08 Gi8 0.00% oB/0B 2l2mefoe 1

Figure 10.3 Executing the docker stats command

Press Ctrl+C to exit the stream. You can customize the output by providing the
desired format with the ——format option. For example:

Click here to view code image

docker stats --format "table {{.Name }} \t {{.ID }} \t {{.CPUPerc}} \t {

You can include the following metrics with the ——format option:

* . Name returns the container name.

* . ID returns the container ID.

* .CPUPrec returns the CPU utilization percentage.
* .MemUsage returns the memory utilization.

* .NetIO returns the network I/O utilization.

* .BlockIO returns the block I/O utilization.

* .MemPerc returns the memory utilization percentage.

* . PIDs returns the number of PIDs.

As you can see in Figure 10.4, this provides a great way to see the performance
data by host.

NAME CONTRINER 1D CPU = MEM USAGE / LIMIT
nervous_bhaskara byB31186F0dY7a2YBeaabidYadb?cFy63bF0dEebe?e?FI?S00LI31T5YEII 0.00% 1.98 MiB [47.08 GiB
1

Figure 10.4 Using the —-format option to see performance data by host

APIs

The docker stats command is a great way to pull a live stream of data. The
good news is that REST APIs are available that you can utilize to build your
own performance dashboards across clusters. These APIs provide similar live
stream data but are more detailed than docker stats.

GET /containers/ (ID/Name)/stats

The API end point to pull statistics about a running container is

Click here to view code image

curl --unix-socket /var/run/docker.sock -X GET
'"http:/vl1.24/containers/<container ID>/stats'

Just as the docker stats command does, the API starts streaming the data
every second. It is up to you to program it in a way that does not disrupt
performance. For e.g. you may want a snapshot at some defined frequency.
Hopefully, this limitation will be fixed soon by including some kind of streaming
flag in the API.

As we learned in previous chapters, one of the best practices to effectively
monitor containers is to tag the containers in a meaningful way. You can define
the tags when you build the images. This way, rather than working at a particular
host or container level, you can work with tag names.

For more information on REST APIs, refer to docker.com.

cAdvisor

cAdpvisor, also known as Container Advisor, is a monitoring solution developed
by Google. It provides detailed data on the usage and performance metrics of
containers through a graphical user interface. It comes as a container itself that
you can deploy on your host machines. cAdvisor collects the data from all the

http://docker.com

containers running on the host, then aggregates and processes these data for your
consumption. It also exposes this data through APIs that you can take advantage
of.

So that you can quickly try out cAdvisor on your machine with Docker, there
is a Docker image that includes everything you need to get started (for more
information, see https://github.com/google/cadvisor). You can run a single
cAdvisor to monitor the whole machine. Simply run the following code:

Click here to view code image

sudo docker run \

--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:rw \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
-—publish=8080:8080 \

--detach=true \

--name=cadvisor \

google/cadvisor:latest

cAdvisor runs in the background. You can see the GUI by going to
http://localhost:8080, which brings up the built-in web UI.

The last two ways of collecting metrices we discussed are good solutions but
very host-centric. They do provide APIs that you can use to centralize your
monitoring system, but many off-the-shelf systems provide cluster-wide metrics
and monitoring. We discuss a couple of systems next. This is a very fast-
changing area, so the idea here is to provide the key concepts. You should
continue to search online for the respective project pages for these solutions to
get the latest information.

Cluster-wide Monitoring Tools

Let’s look into some of the open source cluster-wide monitoring tools available.

Heapster

Heapster is another solution developed by Google to solve cluster-wide
monitoring. It uses cAdvisor heavily to achieve its goals and is a good fit if you
are using Kubernetes as your orchestration engine. However, at this book’s
publication, Heapster supports only Kubernetes and CoreOS.

In Kubernetes, cAdvisor is integrated into the Kubelet binary. As we discussed,
cAdvisor auto-discovers all containers within the host and collects the usage,

https://github.com/google/cadvisor
http://localhost:8080

performance, and network usage statistics. Kubelet takes all these statistics from
cAdvisor and exposes the aggregated resource usage statistics to Heapster
through a REST API. Heapster processes and groups this data and pushes to the
configured back end for visualization. Currently supported back ends include
InfluxDB and Grafana for visualization.

Refer to https://kubernetes.io/ and https://github.com/kubernetes/heapster for
more details.

Prometheus

Prometheus is an open source cluster monitoring and alerting solution. It is a
little different from other solutions in that it is built on a pull-based model. In
this model, the monitoring agent pulls its targets on a predefined frequency to
collect, store, and alert on data. The applications must expose their data rather
than send it out. It also offers a flexible query language called PromQL. Before
we look into how Prometheus works with Docker, let’s look at its main
components:

* Prometheus server. This component pulls/scrapes and stores the collected
data and run rules to record new time series. It also can be configured to
generate diagnostic alerts that can be picked up by Alertmanager.

* Web UL Prometheus uses Grafana as the graphical front-end interface to
build highly visual and interactive dashboards.

» Push gateway. This intermediate service enables you to push the metrics
from short-lived services for which the data pull is not possible. The
Prometheus server can then pull those metrics. Be careful when using push
gateways, as they can become single points of failure for that particular
source.

» Exporters. These are special-purpose plugins or libraries used to export
metrics from certain systems in which it is not feasible to instrument them
with Prometheus metrics. Following are some examples:

* HAProxy is a simple server that scrapes HAProxy stats and exports them,
via HTTP/JSON for Prometheus consumption at regular intervals.

* Memcached exporter exports metrics from a mem-cached server for
Prometheus consumption. You can create custom exporters for your third-
party applications. There are many available. For the latest list of available
exporters, refer to

https://kubernetes.io/
https://github.com/kubernetes/heapster

https://github.com/prometheus/docs/blob/master/content/docs/instrumenting,

» Alertmanager. Alerts sent by the Prometheus server and other applications
are processed by Alertmanager as configured. The processing includes
deduplication, grouping, and routing to the configured medium (e.g., email,

pager).

Given all these components and their functions, it is easy to understand how
Prometheus can be used to monitor Docker containers with an example. In this
example, we set up the following:

* Run Prometheus and the components mentioned previously.

* Add a node exporter container that can be used to export metrics from
containers and a cAdvisor container.

* Set the node exporter, cAdvisor, and Prometheus containers as our targets to
be monitored by Prometheus (in this case, Prometheus will monitor itself).

* Set up and configure Grafana.
* View the stats.

* Integrate with Alertmanager to configure alerts.

Step 1: Running Prometheus

The first step is to bring up Prometheus server. We run this server as a Docker
container. In order to collect Docker metrics, we configure this container as the
Prometheus target so that it monitors itself too.

Let’s begin with a Docker compose file, docker-compose.yml, that runs
Prometheus as a container:

Click here to view code image

version: '2'
networks:
- pk network:

driver:bridge

volumes:
prometheus data: {}

services:

https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exporters.md

prometheus:
image: prom/prometheus
container name: pk prometheus
volumes:
- ./prometheus/:/etc/prometheus/
- prometheus data:/prometheus
command:
- '-config.file=/etc/prometheus/prometheus.yml’
- '—-storage.local.path=/prometheus’
- '-storage.local.memory-chunks=100000"
restart: unless-stopped
expose:
- 9090
ports:
- 9090:9090
networks:
- pk _network
labels:
org.label-schema.group: "monitoring for PK containers"

As you notice, we pulled the Prometheus image and ran it as pk_prometheus.
We also created a bridge-based network, pk_network, to which containers are
added. Next, we mapped the configuration file, prometheus.yml, that defines the
scrape information, and we mapped and exposed the port.

Here is what prometheus.yml looks like:

Click here to view code image

global:
scrape interval: 20s

evaluation interval: 20s

#Attach the below label for graph view
external labels: monitor: 'Docker-pk-monitor'

End points for scrape

- job name: 'pk prometheus'
scrape interval: 25s

static configs:

- targets: ['localhost:9090"']

It is quite self-explanatory. We set the scraping and evaluation intervals. The
scraping interval defines how frequently to scrape the target, whereas the

evaluation interval defines rules evaluation frequency. Notice we added the
Prometheus container that we are about to bring up as its target so it will monitor
itself.

Now, let’s bring Prometheus up by running docker-compose, as shown in
Figure 10.5:

docker-compose up —-d

[ANUJSIN-M-T2HS: dockprom anujsins
ANUJSIN-M-T2HY: dockprom anujsins docker-compose up -d
/AANING: The Docker Engine you're using is running in swarm mode.

Compose dose not use swarm mode to deploy services to multiple nodes in a swarm.
to deploy your application across the swarm, use “docker stack deploy ™.

Pulling prometheus [prom/prometheus:lastest]...
lastest:pulling from prom/prometheus

qb0belcd4050b : pull complete

a3ed3d5caebl2: pull complete

d6abBe?Scel? : pull complete

96eeb64debeb: pull complete

lefeed9aa461 : pull complete

Bd3b35efeddl : pull complete

bel?3630d433 : pull complete

E3e?0970c133 : pull complete

B3449160FF0d : pull complete

Digest: sha256:4f6d3a525f030e598016be?65283c6455c3cB30937a5¢c316b27a5d727be?18el
Status: Downloaded newer image for prom/prometheus: latest
Creating prometheus ...

Creating prometheus ... done

ANUJSIN-M-T2H3:dockprom anujsins il

Figure 10.5 Creating Prometheus container

To confirm that Prometheus is up and running, let’s run docker ps, as
shown in Figure 10.6.

ANUJSIN-M-T2H3:dockprom anujsins docker ps

CONTRINER 1D IMAGE COMMAND CREATED STATUS
PORTS NRMES
48dlefcS5881 prom/prometheus “/bin/promethus -..." 54 seconds ago up 53 seconds

0.0.0.0:9090-,3090/tcp promethus
ANUJSIN-M-T2H9:dockprom anujsins i

Figure 10.6 Prometheus up and running

Everything looks good so far. To get to the Prometheus UI, go to
http://localhost:9090/. Figure 10.7 shows what you should see.

4 | (D 1Z7001:5000/graph & O greatnes > wB 4+ & OB

Prometheus

Graph Consola

Elasmaent Value

o o

Remove Graph

Figure 10.7 Prometheus user interface

Step 2: Adding Node Exporter and cAdvisor

Let’s start adding other components in the same compose file and add targets. To
start, we add the node exporter and cAdvisor to our existing Docker compose
file so that they will also run as containers. Notice we are creating these as
example placeholders to collect metrics from application containers. We will use
these containers as targets for our Prometheus server in the next step.

Click here to view code image

nodeexporter:

image: prom/node-exporter

container name: pk nodeexporter

restart: unless-stopped

expose:

- 9100

networks:

- pk network

labels:

org.label-schema.group: "monitoring for PK containers"

cadvisor:

http://localhost:9090/

image: google/cadvisor:v0.26.1
container name: pk cadvisor
volumes:
- /:/rootfs:ro
- /var/run:/var/run:rw
- /sys:/sys:ro
- /var/lib/docker/:/var/lib/docker:ro
restart: unless-stopped
expose:
- 8080
networks:
- pk _network
labels:
org.label-schema.group: "monitoring for PK containers"

What we did here is very straightforward. We spun up the node exporter and
cAdvisor containers, and we exposed the ports on the same network.

Step 3: Adding Targets
The next step is to add the node exporter and cAdvisor as our Prometheus
targets. Let’s add them to our existing Prometheus.yml file:

Click here to view code image

scrape configs:

- job name: 'pk nodeexporter'
scrape interval: 15s

static configs:

- targets: ['nodeexporter:9100']

- job name: 'pk cadvisor'
scrape interval: 20s

static configs:

- targets: ['cadvisor:8080']

Let’s run the compose file again and make sure our new containers are up:

docker-compose up -d

As you can see in Figure 10.8, all is well so far.

Status: Downloaded newer image for google/cadvisor:u0.26.1
Creating prometheus ...

Creating cadvisor ...

Creating nodeexporter ...

Creating prometheus

Creating nodeexporter

Creating cadvisor ... done

Figure 10.8 Running docker compose

Step 4: Bringing Up the User Interface: Grafana

To stand up Grafana to view the metrics, we go back to our Docker compose file
and update it to include Grafana:

Click here to view code image

volumes:
prometheus data: {}
grafana data: {}

grafana:
image: grafana/grafana
container name: grafana
volumes:
- grafana data:/var/lib/grafana
env_file:
- user.config
restart: unless-stopped
expose:
- 3000
ports:
- 3000:3000
networks:
- pk _network
labels:
org.label-schema.group: "monitoring for PK containers"

Next, let’s add a user configuration file to create an admin user for Grafana at
the same location where our Docker compose file resides. Call this file
user.config, as specified previously in env file:

Click here to view code image

GF_ SECURITY ADMIN USER=admin
GF SECURITY ADMIN PASSWORD=admin
GF USERS ALLOW SIGN UP=false

Now let’s run bring up our Grafana and test it:

docker-compose up —-d

As you can see in Figure 10.9, all our containers are up.

Creating pk_prometheus ...
Creating pk_nodeexporter ...
Creating pk_alertmanager ...
Creating pk_cadvisor ...
Creating pk_grafana ...

Creating pk_nodeexporter
Creating pk_prometheus
Creating pk_alertmanager
Creating pk_cadvisor

Creating pk_prometheus ... done

Figure 10.9 Containers are up

To check the status of Docker containers, use the docker ps command, as
shown in Figure 10.10.

ANUJSIN-M-T2H9:dockprom anujsing docker ps

CONTRINER 1D IMAGE COMMAND CREATED STRATUS
PORTS NAMES

1c98a5683541 grafana/grafana *[run.sh” About a minute ago Up 58 seconds
0.0.0.0:3000->3000/tcp pk_grafana

b6935¢85ceBB google/cadvisor:v0.26.1 “fusr/bin/cadvisor...” About a minute ago Up 58 seconds
80B0/tcp pk_caduisor

2e6535fdaYef prom/falertmanager “/bin/alertmanager...” About a minute ago Up 58 seconds
0.0.0.0:9093->9093/tcp pk_alertmanager

dbaleDaalces prom/prometheus “fbinfprometheus -..." About a minute ago Up 57 seconds
0.0.0.0:3000--9090/tcp pk_prometheus

95703482e361 prom/node-exporter “/binfnode_exporter” About a minute ago Up 58 seconds
9100/tcp pk_nodeexporter

ANUJSIN-M-T2H9:dockprom anujsing Il

Figure 10.10 Using the Docker ps command to check the status

Let’s check out our apps. Go to http://localhost:9090/ to see Prometheus, as
shown in Figure 10.11. Go to http://localhost:3000/ to see Grafana, as shown in
Figure 10.12.

http://localhost:9090/
http://localhost:3000/

€ | (D 127000.4:5080/gragh & Y greatnes + wH ¥+ & OB

- insert metric at cursor - j

Graph Consola

Elaraind Vailua

o caia

Remove Graph

Figure 10.11 Checking out Prometheus

& D 1270033000 gh @ | Q Search e ¥+ A& 9B

Grafana

Log in

Figure 10.12 Checking out Grafana

As we can see, our applications are up and running.

Configuring Grafana
We need to configure Grafana to visualize the data. First, log in with the
username and password from the Grafana configuration file, which we specified
as admin/admin.

Now add the data sources for Grafana, as shown in Figure 10.13.

49 - 88 Home - &

- . admin

Home Dashboard

Dashboards
Alerting

= DataSources
Flugins

£ Admin

X PFin

Figure 10.13 Adding the data sources for Grafana

Let’s fill in the detailed source information such as type of source and
credentials, as shown in Figure 10.14:

* Name: Prometheus
* Type: Prometheus
* URL.: http://prometheus:9090

» Access: proxy

http://prometheus:9090

40 - & Data Sources -

Edit data source

Config Dashboards

Mame Prometheus i Default [

Type Prometheus

Http settings
Lirl http:/fprometheus:2030

proxy

Http Auth
Basic Auth] With Credentials

TLS Client Auth] With CA Cert

Save & Test Delete Cancel

Figure 10.14 Setting the data sources

Click Save & Test, and you should see a success message. Grafana and
Prometheus are now connected.

Step 5: Viewing the Stats

We are all done with the setup. Now we’re ready to see the stats that Prometheus
has collected from three targets: cAdvisor, node exporter, and Prometheus itself.

Bring up the Prometheus UI by going to http://localhost:9090. Click the
dropdown menu next to the Execute button, and select the queries to view the
collection stats; click Execute, as shown in Figure 10.15.

http://localhost:9090

container_fs_lo_time_seconds_total
Load tima: Fime
Resgiytion: 145
Total tma o T
m container_fs_writes_total j

| container_cpu_system_seconds_total
Gragh qommcpumgemonds_w

containgr_cpu_user_seconds_total
Bamant container_fs_inodes_free

| containgr_fs_inodoes_total
contsinerfs_jol container_ts_io_current

| Im am
container hﬁmw z':: m lemﬂs 1otal EroTal dasdaabiaT TOMAT AT abliT o eutrlT Beb2u00bd" containts_abel_com_cocikor GOMmpona_contaings mumbans®
Fedal® b mmﬂl fs_erit_buies fote" prom/sionmanager” instancos"cadvisor 080" jobe" cadviscr” fumes"sietmanager}

‘consiner_ts, ol CONtAINGC_f3_read_seconds_total [Bet 180u00T e S0 54 100w 01 6t BOBEA0NE0R 14088511 " ortaintr_label_ com_ gtk Sompddd_CanBing!_fumbsts" 1
Aeda1* jae" o CONRBIne_ fs_reads._bytes_total lagos"googiaicadvisorel P 1" instancps"cadvisor BB joba " catvisor” names"cadvisor'}

IWM 5_roads_menged_total <
m."\.ﬂ.mw_hm total e ORI TS LT RIS . RS (eidd_COBONS_SORLERS Pt e
A" eocininge f5_secior_reads_total b prom/rods-aperee ratince="cacvisor 080" obe ' carviane” nime s negerperies |
WMHHW fa_sector_writes_total)

| container_fs_usage_bytes
container_ts o pantaingr IS write_seconds. total 000 TaOrS G BT RS Aok OB 4 TH0LebT1 150151 " contaings_label_nom_docisr_oomposs_oonkainer_numiers”
Mrdal” s M“ﬁconumofhwﬁm Wm |="pralana'praftara” iratanoes" cldvisor 80807 jobs"cadvisor” names" grafana "}
o= Toditdda0des it echaiT Toal dold Shdct il aatide” ontainr_label_com_docie_ OOMPOoBE_Containe_nambens
blen) Bel0cNacl T 1 " imags "prom/prdme et in|
Roemove Graph

Figure 10.15 How to view the collection stats

In the example shown in Figure 10.16, we’ve selected
container_cpu_system_seconds_total. The results show all the containers and
total system CPU time consumed in seconds.

Prometheus

container_cpu_system_seconds_tedal
Load tmec 1Tms
Resolstion: 1y
Tokal me seriss: §

Exacuta CONAINGS_CPU_SYSHem_sec j

Gragh Conscle

=

conaing,_Spu_ TRt Bosond,_tiasfeontaine: kbl com_ dockin compies, config hishe " TEE Teost ot a 000t TSR0 TS 1 M atet] cOOB 1 4700 L00 T 11501 51" contaings_abol oo dothnr oongie, Containg_fumits
st Rl S FEAEL AR TEaS ToS0MEEaS 20 E T IR0 TE1 15ade Siada T mage " prafanalgralana” Initancts "Cadviaar BOBD" Jobe"Cathvitor Aamo="gratana’}

‘conuner_cou system second tonafontane label com gocier w’rm oonfin_hishe"TTRaaeBCE0207001 Jasdaab i TTOSBITITETobET SeoblT e 1ooeb T Beb 0004 " containe_label_com_dacker_composs_containgr rumbers)

1838 L JedoB54" imagos por” iraiances " cacvisorB080" jobs"cagviscr ™ names" sigrimanager}

Contang:_cpu_wystem_seoonds, totsifoontaings_label ooem_gdocker Oomposs_config hashes BnocTASRcHS1 10 7891 S4ctale”, container_labal_COmMm_00Ckes_COMDONS_ CONMERSs_Mumber
e AR T T o2 0abb0R0EM A TR0 AadodToed 1485081 P 0ied ToTc" Jmages” prominode-exporier ™ rstances " cadvisor S080" jobe"cadvisor” narmes"nodeexporion ™}

COMEINGT_Cpu_Sytem_Beconds,_lotalfoontaing: abal_com_docker oompona_coniig_hishs "BAT1 s 16088501 ° onkaing_kalbl_com_dockir_ Compane_oontainid_numibars"
FREOQua Soc 10T 1 4T HRGUEETOM I adt T AP i 1197 Jenage=* 026,17, “eachvisorB0BD" ot cadvisor ramos"cadvisor)

CerAsnG_tfe_Syatem_Socindt_toAsde " ritantts "Eadvics BOBD" jobe "t advisar)

‘container_con_system_soconds, iofalfoontsiner_label_com_docier_ componss_config_ hashs"Sa T2 Tiea mwmmmww_w
SeveloporsBpooglegroups. s contmingr_lahel oo lshel_ sohima_gpoupe" g ke 131 HOTESY 117, emaga"promip “eachvisor iy

CONMEINGY_Cpa_SyStam_seconds_totai{ids " /ngd”, nstancgs"cacvisor 8080° jobs"cadvisor"}
BOMENG_EEe_TyRtem_sedcnds,_Botai{ds ideckir” Nitancss "cadvisorBOBD" ol cadvidcr '}

Figure 10.16 Container results: total system CPU time consumed, in seconds

Riemove Graph

Great stats, but the display doesn’t look that great. Let’s improve the aesthetics
by importing Prometheus stats to Grafana. Bring up the Grafana UI by going to
http://localhost:3000. Log in with your username and password, which is set to
admin/admin in our case. Click the dropdown at the top and select Data
Sources. Click on the Dashboards tab, as shown in Figure 10.17.

43 - k& Data Sources -

Edit data source

Config Dashboaards

Figure 10.17 Editing the data source

You will already see a Prometheus Stats entry: remember, we did the data
source configuration earlier (see Figure 10.14). Click the Import button toward
the right end of the Prometheus entry. It will import all the stats and events from
the Prometheus database. This step needs to be done only once; the new data
will now automatically be pulled with each refresh by Grafana.

To review the sample stats from what you just imported, click Prometheus
Stats. You should see the new, more attractive dashboards, as shown in Figure
10.18.

http://localhost:3000

B8 PrometheusStats - = 2 B wt ¥ Olasts

i Grafana Docs

9 Prom

Uptime Local Storage Memory Series Internal Storage Queue Length

20.4 min 4001

Samples ingested (rate-5m)

Lstiar]

Target Scrapes (last 5m) Scrape Duration

Figure 10.18 Some good-looking dashboards!

Looks good, all thanks to the power of Grafana!
Let’s move another step forward and create a simple custom dashboard to
show the cumulative CPU load of containers on the host. Bring up the Grafana

UI, click on the top left menu, select Dashboards, and then click New, as shown
in Figure 10.19.

e
{) - @ Home. &

0 admin

Dashboards zome

Playlists

Alerting Snapshots

+ MNew
Data Sources
< Import

Plugins

Admin

Pin

Figure 10.19 Creating a simple custom dashboard to show the cumulative CPU
load of containers on the host

Click on Single Stat. Go ahead and configure it as follows:

Click here to view code image

sum(rate (container cpu user seconds total{image!=""}[1m])) /
count (node cpu{mode="system"}) * 100

The query pulls the CPU resource utilization at a given point in time, as shown
in Figure 10.20. This will be in real time.

49 - B8 Docker Containers -

Siﬂglres?fﬂ'f General Metrics

surmratef W CPU_US nn.:l':_tu:ut.:!ilm._lgg:!:“;-[1 mi) /€

Min step

Format as Tirmse Seripg = #

Panel Data Source Prometheus

Figure 10.20 Pulling the CPU resource utilization

Other such examples that can be built in the same way include memory
utilization and system load graphs, as shown in Figures 10.21 and 10.22.

45 - B8 Docker Containers - Backtodashboard £ ZoomOut 3 (@ Lastd5 minutes Refresh

Memory Load

17%

Singlestat General | Metrics | Options Value Mappings Time range

=A (sum{rode_memory_MemTotal) - sum{node_memory_MemFreesnode_memony_Buffers+node_memory_Cached))/ sum{node_memory_MemTotal)...

Legend fonmat Mlin Step 105 O Resolution 172 -
Mietric leokup Formnat as Time seres = &

* B Add Query

Fanel Bata Sowrce Prometheus -

Figure 10.21 Pulling the memory load

88 Docker Containers - Back 1o dashboard € ZeemOuwt > @ Last 15 mir

System Load

Graph General Metrics Legend Display Time range

Legend format — [oad 1m Min step O Resclution 12

hietric loakup node_load! Format as Time series = &

Figure 10.22 Pulling the system load

el
-

Step 6: Integrating the Alertmanager

To finish, let’s now integrate the Alertmanager as part of this configuration. You
can configure the alerts in the Alertmanager based on the data collection within
Prometheus.

Let’s do the following setup:

1. Open the Docker compose file and add the following:

Click here to view code image

alertmanager:
image: prom/alertmanager
container name: alertmanager pk
volumes:
- ./alertmanager/:/etc/alertmanager/
command:
- '-config.file=/etc/alertmanager/config.yml'
- '-storage.path=/alertmanager'
restart: unless-stopped
expose:
- 90093
ports:
- 9093:9093
networks:
- pk network
labels:
org.label-schema.group: "monitoring for PK containers"

2. Add the Alertmanager in the Prometheus container service within the
Docker compose file:

Click here to view code image

prometheus:

image: prom/prometheus

container name: Prometheus pk

volumes:

- ./prometheus/:/etc/prometheus/

- prometheus data:/prometheus

command:

- '-config.file=/etc/prometheus/prometheus.yml’
- '—-storage.local.path=/prometheus’

- '-alertmanager.url=http://alertmanager:9093"
- '-storage.local.memory-chunks=100000"

http://alertmanager:9093

restart: unless-stopped
expose:
- 9090
ports:
- 9090:9090
networks:
- pk _network
labels:
org.label-schema.group: "monitoring for PK containers"

3. Create a rules file to configure alerting rules; name this file container.rules:

Click here to view code image
ALERT tomcat down
IF absent (container memory usage bytes{name="tomcat"})
FOR 10s
LABELS { severity = "critical" }
ANNOTATIONS {
summary= "tomcat down",
description= "tomcat container is down for more than 10 seconds."

}

This rule checks for the Tomcat status. It generates alerts if Tomcat goes
down. It does this by checking the memory used by Tomcat; if the stats are
absent, it sends out an alert.

4. Add this rule to the Prometheus.yml file:

Click here to view code image

Load and evaluate rules in this file every
'evaluation interval' seconds.
rule files:

- "containers.rules"
5. Run the Docker compose file again:
docker-compose up —-d

Bring up Prometheus by going to http://localhost:9090. Click the Alerts menu
at the top. You can see the active alerts, as shown in Figure 10.23.

http://localhost:9090

Prometheus

Alerts

tomcat_down (1 active)

ALERT tomcat_down
IF absent(container_memory_usage_bytes{name="tomcat"}}
FOR 3@s
LABELS {severity="critical"}
ANNOTATIONS {description="Tomcat container is down for more than 3@ seconds.", summary="Tomcat down"}

Labels State Active Since Value

Csoname-omca s | rome-tomeat | sovertr“etiza” PENDING 2017.07-18 2020:07.604 40000UTC 1

Figure 10.23 Showing active alerts

You can further improve this by configuring the tools of your choice for
notification. For more information, check out the Prometheus site:
https://prometheus.io/.

As discussed earlier, monitoring is a very important task and should be a
primary concern, not an afterthought, when transitioning to containers. This is a
new field, and a bit problematic thanks to the challenges highlighted in this
chapter, but new solutions are hitting the market. Keep an eye out and keep
learning!

https://prometheus.io/

PART III

Hands-On Project—Putting Learning
into Practice

Chapter 11

Case Study: Monolithic Helpdesk
Application

In this chapter, we build a traditional web-based helpdesk application following
industry standard practices. However, we build it without using the concepts we
have learned so far; that is, we build a monolithic application. The idea here is to
gain real-world experience. We build this application and then look at some real-
world complexities such as application deployment, managing updates, and
scalability. Once we understand the complexities of using monolithic
architecture, we will see how these challenges can be solved using a
combination of microservices and Dockers, which we will do in the next two
chapters when we rebuild the application using microservices architecture and
deploy using containers.

Helpdesk Application Overview

In today’s digital world, most companies are transforming the customer support
experience by providing a self-service model through mobile/web applications.
Application experience, availability, performance, and search capabilities are all
keys to faster issue resolution and are critical characteristics of the system to
meet the aforementioned objectives.

This application provides support capabilities to help and manage customer
concerns. It is important to note that the application is simplified for the purpose
of explaining the concepts, architecture, and complexities of monolithic
applications.

Assume that in the real world, this application provides customer support for a
mobile phone vendor. This application provides the following capabilities:

* Account management. Provides the user account management functionality
(add/modify/delete). Authentication is managed through username and
password on local database to keep it simple.

* Incident creation and management. Provides the ability to submit new

incidents along with viewing and updating existing ones.

* Product catalog management (admin only). Stores and manages the
product catalog based on the product sold and inventory.

» Appointment setup. Provides ability to set up an appointment with support
professional.

 Search. Provides capability to search for existing issues and resolutions as
well as to search the product catalog.

* Message boards. Customer community board for customers to collaborate
and help each other.

The following technologies will be used to build this application:

* User interface: HTML, JavaScript, and JQuery
» Middle layer: Java 7, Spring 3.x, Jersey 1.8, and Hibernate
* Database: MySQL 5.x

Refer to Appendix A to better understand the application workflows and step-
by-step process. All the code and assets are available on the GitHub repository
located at https://github.com/kocherMSD/Helpdesk_Monolithic.git.

You can clone the code to your local machine using the git clone
command. We will use this code during our set up process.

Application Architecture

Now that we understand how this application is used, let’s dive into the technical
details of the application. Figure 11.1 shows the component-based architecture of
the application.

https://github.com/kocherMSD/Helpdesk_Monolithic.git

Support Engineer Support Manager
Customer App
5 App App
/ Helpdesk Support Services \
g
e Account Authentication/ T S :
e
3 Global Ticket Product :
= e o :
E

MySQL
Helpdesk Data Store

g
o
i
a

Figure 11.1 Our helpdesk app’s components and basic architecture

As you see, it is a three-tier architecture application composed of a database,
business logic/services, and a user interface. Now let’s take a high-level look at
the list of services that are part of the application. For implementation details,
you can refer to code posted at GitHub.

Authentication, Interceptor, and Authorization

As the name indicates, this module provides services to authenticate users and
authorize what level of information users are entitled to access based on their
role. To make it simple, we have implemented simple authentication (database
username/password) and role (database username and role)-based authorization.
We have implemented spring interceptor to make sure every request is
authenticated. The role and login are saved into session and are fetched from
session as required.
Following is the pseudocode for authentication.

Authentication

This service is use to authenticate user using username and password from the
text field of login page. The username/password pair is matched with the entry in
the database.

* Context: authenticate

* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

e Input: Ht tpHeaders, request

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for authentication service:

Click here to view code image

@Override

@POST

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path ("/authenticate/™)

public AuthenticationResponse authenticate (
@Context HttpHeaders headers,
AuthenticationRequest request)

//To-do Implementation

Interceptor

The Interceptor intercepts all the incoming requests to the application server
using ./* pattern matching, which helps in executing the prehandle
function. Following is the spring pseudocode for XML and Java:

Click here to view code image

<interceptors>
<interceptor>
<mapping path="/*"/>
<beans:bean>
class="org.spring.controller.AuthenticationInterceptor"
<beans:bean/>
</interceptor>
</interceptors>

@Override
public boolean preHandle (

HttpServletRequest request,
HttpServletResponse response,
Object handler) throws Exception {
//To-do Implementation
}

Authorization

Our application has multiple roles, and when users log in, their roles are saved in
the HTTP session as part of the interceptor logic. The following code snippet is
used in the authorization controller to fetch the HTTP session.

Click here to view code image

LoginForm userData = (LoginForm)
context.getSession () .getAttribute ("LOGGEDIN USER") ;

The following code snippet is for the authorization frontend JavaServer Pages
(JSP):

Click here to view code image

<

o°

LoginForm loginform=(LoginForm)session.getAttribute ("LOGGEDIN USER");
String user=loginform.getUsername () ;

if (session.getAttribute ("ACCESS LEVEL") .equals ("4"))

%>

Account Management

This component provides services related to managing user accounts, associated
contract or entitlement details, details of purchases such as product information,
serial number, and so on. For example, a customer may have bought one or more
mobile phones with warranty and professional support services. These details
will be made available through APIs for entitlement check and support. The
following services are provided:

* getAccount: Gets details of an onboarded user.
* addAccount: Onboards a new user.
» updateAccount: Updates an existing onboarded user.

* deleteAccount: Removes existing user from the system.

Following is the signature for the service class:

Click here to view code image

@Component
@Path ("/AccountService")

public class AccountServiceImpl implements AccountService {

getAccount

This service pulls the account information for the registered user if available in
the system. Account information is fetched from a backend database and
returned in JSON format.

* Context: AccountService/getAccount/{customerId}
* Method: GET

* Consumes: application/xml, application/json

* Produces: application/json

e Input: HttpHeaders, customerId

* Output: JSON of user, account information, device, and services information

Following is the pseudocode for getAccount:

Click here to view code image

@Override

@GET

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path ("/getAccount/{customerId}")

public AccountViewResponse getAccount (
@Context HttpHeaders headers,
@PathParam("customerId")String customerId)
throws ServicelnvocationException {

//To do the task and implementation of DAO

addAccount

This service adds the given account for the customer. It adds account
information in the backend database. The input is constructed in JSON from text

fields and persisted in respective database tables.

* Context: AccountService/addAccount

* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

» Input: HttpHeaders, JSON of user, account information, device, and
services information

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for addAccount:

Click here to view code image

@Override
@POST
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path ("/addAccount/")
public AccountResponse addAccount (
@Context HttpHeaders headers,
AccountRequest req)
throws ServicelInvocationException ({
//To do the task and implementation of DAO
}

updateAccount

This service updates the account information of the given user in the system. The
updated information is persisted in the backend database.

* Context: AccountService/updateAccount

* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

* Input: HttpHeaders, JSON of user, account information, device and
services information

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for updateAccount:

Click here to view code image

@Override
@POST
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path ("/updateAccount/")
public AccountResponse updateAccount (
@Context HttpHeaders headers,
AccountRequest req)
throws ServicelInvocationException ({
//To do the task and implementation of DAO
}

deleteAccount

This service is used to delete an account of the given user from the application.
If an account’s information is available, then that account’s information is
removed from the database.

* Context: AccountService/deleteAccount

* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

* Input: HttpHeaders, JSON of user, account information, device and
services information

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for deleteAccount:

Click here to view code image

@Override

@POST

@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})

@Path ("/deleteAccount/")

public AccountResponse deleteAccount (

HttpHeaders headers,

AccountRequest req)

throws ServicelnvocationException {
//To do the task and implementation of DAO
}

Ticketing

This set of services is used by a registered user to open and review support
tickets on the products purchased. The following services are provided:

* createTicket: Creates a ticket.
* viewTicket: Opens a ticket to be viewed.

*viewAllTicket: Opens all tickets to be viewed.

Following is the service class definition:

Click here to view code image

@Component
@Path ("/TicketService")
public class HelpDeskTicketServiceImpl
implements HelpDeskTicketService, ApplicationContextAware {

createTicket

This service creates a ticket for the user. A JSON request is constructed using the
content of a create ticket webpage. This JSON request is transformed as a data
model and persisted in the database using hibernate so that it can be viewed later
for resolution.

* Context: TicketService/createTicket

* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

* Input: HttpHeaders, JSON of ticket information (e.g., contract number,
issue information, user ID)

* Output: Ticket number generated, response status (i.e., either success or

failure)

Following is the pseudocode for createTicket:

Click here to view code image

@Override
@POST
@Consumes ({ MediaType.APPLICATION JSON, MediaType.APPLICATION XML })
@Produces ({ MediaType.APPLICATION JSON, MediaType.APPLICATION XML })
@Path ("/createTicket/")
public TicketResponse createHdTicket (
@Context HttpHeaders headers,
TicketRequest ticketRequest)
throws ServicelnvocationException({
//To do the task and implementation of DAO
}

viewTicket

This service returns the ticket details based on the given ticket number and the
user role. It pulls the ticket information from the database if the ticket number
provided for the customer is available. A data model is fetched using hibernate
and returned as JSON.

* Context: TicketServices/viewTicket/{userId}

* Method: GET

* Consumes: application/xml, application/json

* Produces: application/xml, application/json

e Input: HttpHeaders

e Output: JSON of tickets information (e.g., contract number, issue

information, user ID)

Following is the pseudocode for viewTicket:

Click here to view code image

@Override
@GET
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})

@Path ("/viewTicket/{userId}/{ticketId}")
public ViewTicketResponse viewTicket (
@Context HttpHeaders headers,
@PathParam("userId")String userId,
@PathParam("ticketId")String ticketId)

throws ServicelnvocationException {

viewAllTicket

This service returns all the tickets available in the system that were created by a
logged-in user. A data model is fetched using hibernate and returned as JSON.

e Context;: TicketServices/viewAllTicket

* Method: GET
* Consumes: application/xml, application/json
* Produces: application/xml, application/json

e Input: HttpHeaders

e Output: JSON of tickets information (e.g., contract number, issue
information, user ID)

Following is the pseudocode for viewAl1Ticket:

Click here to view code image

@Override

@GET

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path ("/viewAllTicket/")

public ViewAllTicketResponse viewAllTicket (
@Context HttpHeaders headers)
throws ServicelnvocationException {

//To do the task and implementation of DAO

}

Following are the options that are available to the users based on the role:

* My Tickets. Provides a list of tickets assigned to support engineers or a list
of tickets opened by users based on user roles.

* Global Ticket View. Enables viewing of all tickets for executive or support
manager view.

Product Catalog

The product catalog service enables an administrator to manage a list of products
offered by a company. It also enables users to view a list of products they
purchased and on which they can open a support ticket. Following is the list of
available services:

* getCatalog: Returns the product catalog.
* addCatalog: Creates a new entry in product catalog.
* updateCatalog: Updates the specified entry in the product catalog.

* deleteCatalog: Deletes an existing product catalog entry.

The service class definition is as follows:

Click here to view code image

@Path ("/CatalogService")
public class CatalogServiceImpl implements CatalogService {

getCatalog

This service returns a list of products available in the system. A data model is
fetched using hibernate and returned as JSON.

* Context: CatalogService/getCatalog/{customerId}
* Method: GET

* Consumes: application/xml, application/json

* Produces: application/json

 Input: HttpHeaders, customerId (all occurrences of header should
be replaced with Ht tpHeaders)

* Output: JSON of product information customer has under his or her account

Following is the pseudocode for getCatalog:

Click here to view code image

@Override

@GET

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path ("/getCatalog/{customerId}")

public ProductDetailsResponse getCatalog(
@Context HttpHeaders headers,
@PathParam("customerId") String customerId)
throws ServicelnvocationException {

//To do the task and implementation of DAO

}

addCatalog

This service adds a new product to the Catalog. A JSON request is created using
the input page and then transformed into a data model and saved in a database
using hibernate.

* Context: CatalogService/addCatalog

* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

* Input: Ht tpHeaders, JSON of product information customer has under his
or her account

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for addCatalog:

Click here to view code image

@Override
@POST
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path ("/addCatalog/")
public CatalogResponse addCatalog (
@Context HttpHeaders headers,
CatalogRequest req)
throws ServicelnvocationException {
//To do the task and implementation of DAO

updateCatalog

This service updates an existing product catalog entry if the specified product is
available in the system. JSON is changed in the data model, and it updates the
database.

* Context: CatalogService/updateCatalog

* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

* Input: Ht tpHeaders, JSON of product information customer has under his
or her account

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for updateCatalog:

Click here to view code image

@Override
@POST
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path ("/updateCatalog/")
public CatalogResponse updateCatalog(
HttpHeaders headers,
CatalogRequest req)
throws ServicelnvocationException {
//To do the task and implementation of DAO

}

deleteCatalog
This service is used to delete a product catalog entry from the catalog. The entry
from the database is deleted using hibernate.

* Context: CatalogService/deleteCatalog
* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

* Input: Ht tpHeaders, JSON of product information customer has under his
or her account

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for deleteCatalog:

Click here to view code image

@Override
@POST
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path ("/deleteCatalog/")
public CatalogResponse deleteCatalog(
HttpHeaders headers,
CatalogRequest req)
throws ServicelnvocationException {
//To do the task and implementation of DAO

}

Appointments

The appointments service works similarly to the Apple Genius Bar. Users can
reserve an appointment with support engineers to schedule a time at the store.
The following services are available in appointments:

* getAvailableTimeSlots: Gets all available times slots for an
appointment for a given date.

* getAvailableDates: Returns the days for which at least one slot is
available.

* saveAppointment: Saves an appointment to the schedule.

Following is the service class definition:

Click here to view code image

@Component
@Path ("/AppointmentService")

public class AppointmentServiceImpl ({

getAvailableTimeSlots

This service retrieves all the available time slots for a given date in JSON
format.

* Context: AppointmentService/getAvailableTimeSlots
* Method: GET

* Consumes: application/xml, application/json

* Produces: application/json

e Input: Ht tpHeaders, TITLE

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for getAvailableTimeSlots:

Click here to view code image

@Override

@POST

@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})

@Path ("/getAvailableTimeSlots/")

public

AppointmentAvailableTimeSlotResponse getAvailableTimeSlots (
@Context HttpHeaders headers,
AppointmentAvailableTimeSlotRequest Request) {

//To Do}

getAvailableDates

This service returns all the available dates that have available one or more time
slots for the appointment.

* Context: AppointmentService/getAvailableDates
* Method: POST

* Consumes: application/xml, application/json

* Produces: application/json

e Input: HttpHeaders, TITLE

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for getAvailableDates:

Click here to view code image

@Override

@POST

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path ("/getAvailableDates/")

public

AppointmentAvailableDateResponse getUnAvailableDates (
@Context HttpHeaders headers,
AppointmentAvailableDateRequest request) {

///to do}

saveAppointment

This service sets and saves the appointment for a selected available time and
date.

* Context: AppointmentService/saveAppointment
* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

e Input: Ht tpHeaders, TITLE, request

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for saveAppointment:

Click here to view code image

@Override

@POST

@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})

@Path ("/saveAppointment/")

//To Do}

Message Board

The message board service enables collaboration between the user community
and support experts. The following services are available in the message board:

* getMessage: Retrieves a message available in the system.
*» getAl1Message: Gets all messages based on a given time.

* createMessage: Saves a message, question, or answer provided by a
user.

Following is the service class definition:

Click here to view code image

@Component
@Path (" /MessageService")
public class MessageServiceImpl implements MessageService {

getMessage

This service pulls the messages, questions, and answers available in a system,
based on the question asked by a user.

* Context: MessageService/getMessage/{title}
* Method: GET

* Consumes: application/xml, application/json
* Produces: application/json

e Input: Ht tpHeaders, TITLE

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for getMessage:

Click here to view code image

@Override

@GET

@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})

@Path ("/getMessage/{title}")

public MessageViewResponse getMessage (
@Context HttpHeaders headers,
@PathParam("title")String title)
throws ServicelnvocationException {
//To do the task and implementation of DAO

getAllMessage

This service returns all the available messages or questions in the system based
on a given time slot provided by the user and returns them in JSON format.

* Context: MessageService/getAllMessage

* Method: GET

* Consumes: application/xml, application/json
* Produces: application/json

e Input: HttpHeaders

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for getAl1Message:

Click here to view code image

@Override

@GET

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path ("/getAllMessage/")

public MessageViewAllResponse getAllMessage (
@Context HttpHeaders headers)
throws ServicelInvocationException ({

//To do the logic

}

createMessage

This service saves a message, question, or answer provided by a user on the
message board.

* Context: MessageService/createMessage

* Method: POST

* Consumes: application/xml, application/json
* Produces: application/json

e Input: HttpHeaders, MessageRequest

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for createMessage:

Click here to view code image

@Override

@POST

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path ("/createMessage/")

public RestResponse createMessage (
@Context HttpHeaders headers,
MessageRequest req)
throws ServicelInvocationException ({

//To do the logic

}

Search

The search service allows users to perform text-based search across the
application. It looks for the text in all of the entities (database table); for
example, ticketing, catalog, and message data. It matches the text if the text is
contained in the data available for the application. It interacts with the backend
database through DAO (data access object) layers and pulls all the related
information from database tables using hibernate mapping with the text provided
as input in a search field.
Following is the service class definition:

Click here to view code image

@Component
@Path ("/Search/Service")
public class SearchServiceImpl implements SearchService {

* Context;: SearchService/search

* Method: GET

* Consumes: application/xml, application/json
* Produces: application/json

* Input: Ht tpHeaders, search text

* Output: Response status (i.e., either success or failure)

Following is the pseudocode for the search service:

Click here to view code image

@Override
@GET
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path ("/search")
public MessageViewResponse search (
@Context HttpHeaders headers,
@PathParam("title")String title)
throws ServicelnvocationException {
//To do the task and implementation of DAO

Building the Application

Now that we have covered the architecture, web services, and various
dependencies of the application, let’s download the code, build it, and see it in

action.

Setting Up Eclipse

We have used Eclipse IDE for development; you can choose whatever IDE you
are most comfortable with, but following are instructions for how to set up
Eclipse on Windows (skip this step if you already have Eclipse installed):

1. Download Eclipse from https://eclipse.org/downloads/index-developer.php.

2. Unzip or Unrar, depending on your system. The prerequisite for Eclipse is

JRE on your system path.

3. Double-click eclipse.exe, shown in Figure 11.2.

https://eclipse.org/downloads/index-developer.php

F System (C) ¢ eclipse ¢ eclipse »

brany = Share with = Buin MNew folder

L. configuration
L. droping
L features

B2 amaanna1as M
| p!uglns
L. readme

Aclipseproduct 61172014 11:28 A ECLIPSEPRODUCT
) artilactsml e e
F?tc:msc.ue 61172014 11:28 A 305 KB
51 eclipseind 167201 ol Hi -
B eclipiecaxe
| epl-v10uhtmi
| noticehiml

Figure 11.2 Unzipping Eclipse

4. Right-click on the package explorer and select New Java Projects. We’ll
name this project Helpdesk, as shown in Figure 11.3, and leave default
values in the other fields.

5. Uncheck Use default location, browse to the directory where you have
cloned the code (as discussed in the beginning of this chapter), and click
Open. Then, click Next.

New Java Project

b Syshew (0 0 pchpes @ ecipes

Cre
cr

B . [L

Trabee,

! L TR T
0 e e
-~ e ow

L L T

e) e

Use a project specific JRE: jdk1.7

Use default JRE (currently 'jdk1.7') Configure JREs...

Project layout

Use project folder as root for sources and class files

Configure default...

0 Create separate folders for sources and class files

Working sets

Add project to working sets New...

<>

Working sets:

@ The default compiler compliance level for the current workspace is 1.8. The new project
will use a project specific compiler compliance level of 1.7.

@ < Back Mext >

Figure 11.3 Creating a new Java project (named Helpdesk)

Cancel

6. Click Finish, as shown in Figure 11.4.

® @ New Java Project

Java Settings
Define the Java build settings.

@Pruject:s =\ Libraries % Order and Export

| = |

| &3 z % 89 5 @ |
£ HelpDesk

; > B ore

|

|

|

* Details
ﬁ? Create new source folder : use this if you want to add a new source folder to your

project.

% Link additional source : use this if you have a folder in the file system that should be
used as additional source folder.

(M Add project "HelpDesk' to build path : Add the project to the build path if the project

is the root of packages and source files. Entries on the build path are visible to the
compiler and used for building.

Allow output folders for source folders
Default output folder:

HelpDesk/bin Browse...

©) Bk N> Giice

Figure 11.4 Completing our application setup

This completes the Eclipse setup. Figure 11.5 shows all the application files.

v f% > Helpdesk [Helpdesk anuj 13]

¥ ;& > src/mainfjava
» i} com.cisco.appointment.Dao
» i} com.ciso.db.connection
» i} com.helpdesk.test
> H com.rst.oauth2.google.api
> i} com.rst.oauth2.google.config
> i} com.rst.oauth2.google.security
> i iquery.datatables.controller
» i jquery.datatables.model
| g i—F'u org.helpdesk.commons.exception
» i} > org.helpdesk.db.dao
> i1 org.helpdesk.db.model
» i1} org.helpdesk.Utils
(3 drﬂ org.helpdesk.webservice.extension
| g iﬁ org.helpdesk.webservice.implementation
| m org.helpdesk.webservice.request
» if org.helpdesk.webservice.response
> i} > org.helpdesk.webservice.support
> i org.json
» i} > org.spring.controller

P =\, JRE System Library [jdk1.7]

» B\, Referenced Libraries

> (=5 > build

P (= common

(= config

> [> dist

» (- helpdesk

> > src

%) build.xml

[README.md

Figure 11.5 All our application files

Building the Application

The following instructions show you how to run the build and produce the
deployable WAR file. We use plain old Apache Ant build.

1. We need to configure the database in the applicationContext.xml file of code
base before building the WAR file. You can find it in Project
Location/src/main/webapp/WEB-INF/ applicationContext.xml. Change the
url, username, and password properties of the DataSource bean in

the following code snippet. Make sure you use these same credentials when
you install and configure MySQL database, shown in later steps.

Click here to view code image

<- id="DataSource" destroy-method="close"
class="org.apache.tomcat.jdbc.pool.DataSource">
<property name="driverClassName"
value="com.mysql.jdbc.Driver" />
<property name="url"
value="jdbc:mysqgl://<dbhost>:<dbport>/<dbname>" />
<property name="username" value="<Username>" />
<property name="password" value="<Password>" />
<property name="initialSize" wvalue="5" />
<property name="maxActive" value="50" />
<property name="validationQuery"
value="select 1 from dual" />
<property name="testWhileIdle" value="true" />
<property name="testOnBorrow" wvalue="true" />
<property name="minIdle" wvalue="020000" />
<property name="minEvictableIdleTimeMillis"
value="30000000" />
<property name="timeBetweenEvictionRunsMillis"
value="6000000" />
<property name="removeAbandoned" value="true"/>
<property name="removeAbandonedTimeout" wvalue="30000" />
<property name="logAbandoned" value="true" />
<property name="maxWait" wvalue="120000" />

</
2. Create a new Build.xml file in the project root directory with the following
targets:
Click here to view code image

<project name="projects" default="jar" basedir=".">

<property name="src" location="src"/>

<property name="build" location="build"/>

<property name="dist" location="dist"/>

<property name="jar.location" location="${dist}/1ib"/>

<dirname property="projects.basedir"
file="${ant.file.projects}"/>
<echo>projects.basedir=${projects.basedir}</echo>

<echo>Inside smartview project:
smartview.basedir=${smartview.basedir}</echo>

<path id="project.classpath">
<fileset refid="sv.Jjars"/>
<fileset refid="common.dist"/>
</path>

<filelist id="project.build.files" dir="${projects.basedir}">
<file name="build.xml" />
</filelist>

<fileset id="sv.jars" dir="${projects.basedir}">
<include name="src/main/lib/*.jar"/>
</fileset>

<fileset id="common.Jjars" dir="${projects.basedir}">
<include name="src/main/lib/*.jar"/>
</fileset>

<fileset id="common.dist" dir="${projects.basedir}">
<include name="dist/lib/*.jar"/>
</fileset>

3. Compile and create the JAR file with these targets:

Click here to view code image

<target name="compile.individual" depends="init">

<javac includeantruntime="false"

debug="true"

compiler="javacl.o"

srcdir="S${src}" destdir="${build}">

<classpath refid="project.classpath"/>

</javac>
</target>

<target name="jar.individual" depends="compile.individual">
<mkdir dir="${jar.location}"/>

<mkdir dir="${build}/META-INF"/>

<copy todir="${build}/META-INF">
<fileset dir="${src}/main/resource/META-INFE"
includes="*.xml"/>

</copy>

<jar jarfile=
"S{jar.location}/org-${ant.project.name}.jar"
basedir="${build}"/>
</target>

<!-- Methods only used by the top level of JARing or
WARing everything up -->

<target name="jar" depends="init">
<mkdir dir="${dist}/lib"/>
<subant target="jar.individual">
<filelist refid="project.build.files"/>
</subant>
</target>

4. Create the WAR file using the following targets:

Click here to view code image

<target name="copy.files" depends="jar">

<copy todir="${stage.war.lib}" flatten="true">
<fileset dir="${projects.basedir}"
includes="*/dist/lib/*.jar"
excludes="*test*.jar" />
</copy>

<copy todir="${stage.war.lib}" flatten="true">
<fileset dir="${projects.basedir}"
includes="common/configproperties/*.xml" />
</copy>

<copy todir="${stage.war.lib}" flatten="true">
<fileset refid="common.jars"/>

</copy>

<copy todir="${stage.war.lib}" flatten="true">
<fileset refid="sv.Jjars"/>

</copy>
</target>

<target name="war" depends="init.war,copy.files">
<war destfile="dist/lib/helpdesk.war"
webxml="src/main/webapp/WEB-INF/web.xml">
<fileset dir="src/main/webapp">
<exclude name="**/_.svn"/>
</fileset>
<lib dir="src/main/webapp/WEB-INF/1lib" />
<classes dir="${build}/classes" />
</war>
</target>

5. Right-click the Build.xml file and click Run As — Ant Build..., as shown
in Figure 11.6.

Undo l.basedir}</echo>
Revert File
Save
Open With [
Show In =
Open Declaration F2
Open External Documentation {tf2
Cut
Copy
Paste #V
Quick Fix 3*1
Shift Right
Shift Left
Rename In File 38R lerarchy & Debug Gradle Executions Histery g
Format +38F
B :: 1 Ant Build X#XQ
Debug As > $ 2 Ant Build...
Profile As >
Validate External Tools Configurations...
Open Javadoc Wizard...
&g Liferay »>
Team [2
Compare With | 2
Replace With >
Preferences...
Remove from Context | Ineor 111

Figure 11.6 Build.xml run options

6. In the next screen, select all targets from the window.

Our local environment is ready, and we have generated the WAR file under
<Project Location>/helpdesk/dist/lib named helpdesk.war.

Deploying and Configuring
We will host our application and all related services on Amazon Web Services
(AWS) and will use a single virtual machine for deployment. You are

encouraged to follow the instructions in this section to get hands-on experience.
The first step is to spin up an EC2 instance on AWS. For our purposes, we’ll use

a medium-flavor virtual machine running an Ubuntu operating system. Tomcat 7
and MySQL should be installed as prerequisites. (Installing Tomcat 7 will also
install Java and other dependencies.)

1. To install Tomcat 7 to the /var/lib/tomcat7 directory, run the following
command:

sudo apt-get install tomcat?

2. The service should be up and running. Check that Tomcat is running
normally by issuing the following command:
sudo service tomcat?7 status

The Tomcat servlet engine should be running with its own process identifier.
You can start and stop Tomcat using the following commands:

sudo service tomcat?7 start

sudo service tomcat7 stop

3. Run the following command to install the MySQL server:

sudo apt-get install mysgl-server

4. During the installation, you will be asked to provide the password for root.
Enter the password to complete the installation.

5. At the end of the installation, MySQL server should be up and running.
Ensure it’s running by using the following command:

sudo service mysgl status

You can start and stop MySQL using the following commands:

sudo service mysqgl start

sudo service mysgl stop

6. Create a database named helpdesk:

Create database helpdesk

7. Copy the application.properties file located at Project
Location/src/main/webapp/WEB-INF/ into the tomcat lib directory. These
are the properties or key-value pair used in our project.

8. Copy the jstl.1.2.jar file located at Project Location/src/main/lib/ into the
tomcat lib directory. This is the library for supporting jsp tags.

9. The Tomcat instance by default runs on 8080 port. Verify by checking

http://<yourhost>:8080/console.

10. We can now deploy the web app from the Tomcat manager console. Click
the Browse button to play the WAR file you created earlier, then click
Deploy, as shown in Figure 11.7.

Deploy directory or WAR file located on server

Context Path (required):
XML Configuration file URL:
WAR or Dirctory URL:

Depley

WAR filo to deploy

Sclect WAR filo to upicad Browse.. helpdesiowar
Depley

Figure 11.7 Deploying the WAR file

As you can see in Figure 11.8, your application is deployed on the Tomcat
server and can be opened from http://<yourhost>:8080/helpdesk.

B gen Rekss wesway

[fonircit oitod i L npew ddiaiond Wi DB 30 LA

Figure 11.8 Location of our app on the Tomcat server

The whole application is now bundled into a single WAR file. At this point, the
application should be up and running on your system. Figure 11.9 shows all of
the dependencies across various modules.

Support Engineer Support Manager
Customer A
5 [i] [BB] [BB
/_ Helpdesk Support Services \
2 1
8
[= Account Authentication/ : : s
.:."ri Management Authorization View Ticket My Tickets
o
]
3
= Product :
o Messe ¢

MySQL
Helpdesk Data Store

%
3
3
a]

Figure 11.9 Helpdesk application’s dependencies across various modules

New Requirements and Bug Fixes

Imagine the application is up and running and serving the customers. This starts
the software maintenance lifecycle. With time, new requests to update or alter
the application functionality will come in, and bugs may be uncovered by
customers. All these requests will require changing code and/or rebuilding the
application. Let’s understand the challenges and work it entails to maintain our
monolithic application.

Let’s assume we need to add an extra parameter to the view ticket service that
has very limited to no dependency on other components. With the following
code, we change the ticket request:

Click here to view code image

public TicketResponse createHdTicket (
@Context HttpHeaders headers,
TicketRequest ticketRequest)

throws ServicelnvocationException({

The following allows us to add a new property to a Plain Old Java Object, or
POJO (web model):

Click here to view code image

@Component
private String emailAddress;
@XmlElement
public String getEmailAddress () {
return emailAddress;
}
public void setEmailAddress (String emailAddress) {
this.emailAddress = emailAddress;

}

Using the following code, we can add logic to the DAO layer to get that
property from the database:

Click here to view code image
private String saveToDatabase (TicketRequest ticketRequest) {

//added with existing one
ticket.setEmailAddress (ticketRequest.getEmailAddress());

That’s about all for the code change, which looks pretty straightforward. But
what happens next? You need to do the following activities on all your
environments and deploy the code:

1. Build the whole web application. This means you have to deploy the whole
application again.

2. Perform regression testing of the whole application to make sure all the
other capabilities are still working as expected.

3. Resolve any bugs or dependencies.

4. Deploy the code to test the environment and perform a quality assurance
process.

5. Deploy the changes to production and deploy.

If the application is not deployed in a high availability (HA) mode, it means
downtime will occur, as the application will be redeployed.

All these steps increase the time to release this minor change and defeat the
whole agile principle. This is not accounting for ongoing changes where you
may have to create a new code branch and merge and test again.

There are other issues, as well:

» Addressing bugs. Each bug fix will require a whole build to be deployed,
which means potential downtime for the system if proper HA is not built into
the deployment architecture. In addition, depending on the systems
development life cycle (SDLC) methodology used, this could mean a lengthy
time before the bug fix could even be introduced. For critical bugs, it usually
means creating and maintain a “hot fix” branch of the code, which can
complicate the code base and create problematic merges later on.

* Replacing application components. Here is another case where the whole
application has to be potentially refactored/reimplemented. Let’s assume the
organization would like to use cloud services for ticket management; the way
the application is written currently, it is hard to decouple the related modules
from the application.

* Replacing or adding new technology stack. In this case, you don’t have the
freedom to choose the technology for new modules/capabilities unless the
whole application is reimplemented. The organization is stuck with the
chosen technology because of the monolithic architecture.

» Scaling selectively. Say you want to scale just the ticketing module to
accommodate the usage patterns. In this case, it is complex because the
application components are tightly integrated as a monolithic application.
Separating ticketing alone, for example, requires a lot of code refactoring,
integration with the standalone ticketing system, testing, new deployment
architecture, and more.

* Handling faults. In a monolithic application, a fault in one component
potentially breaks up the whole application. Let’s suppose that the product
catalog service is down. This will prevent the users from submitting a new
work ticket. A new work ticket should indicate which product the user has a
problem with for better ticket routing and faster problem resolution.
However, a bug in the product catalog service should not prevent the user
from creating the ticket itself—that is, it shouldn’t bring down the ticketing
service itself. But given the monolithic nature, if product catalog is a required
field and there is a bug, the user will be stuck at this stage even though he or
she could have described the issue.

While challenging for our application, these are the simple needs of today’s
digital world. It becomes very costly and time consuming to address them with
the monolithic approach our current application uses. In the next two chapters,
we discuss how these challenges go away with microservices and containers.

Chapter 12

Case Study: Migration to
Microservices

In Chapter 11, “Case Study: Monolithic Helpdesk Application,” we built a
traditional web-based helpdesk application following industry standard practices.
The purpose was to provide a close-to-real-world example and highlight the
challenges that organizations are facing with such monolithic applications today.
In this chapter, we modify the same helpdesk application by using our
microservices knowledge, and we learn how some of the challenges we
highlighted can be addressed.

In Chapter 4, “Migrating and Implementing Microservices,” we discussed two
possible scenarios: creating a new application with microservices and migrating
a monolithic application to microservices. Since our helpdesk is an existing
monolithic application, here we follow the second scenario of migrating to
microservices.

Planning for Migration

Let’s say that the high-level business needs for our helpdesk application were as
follows when the application was first written, back in 2005:

* Support roughly 500,000 customers on the web where they can open work
tickets for their issues.

* All features are equally important and should be available at all times.
* Application is horizontally scalable.

* Reduce number of tickets submitted by allowing users to search for existing
solutions.

Now it is 2018. Let’s review customer behavior and how this application is
being utilized:

» The number of users has grown to 1.5 million and is expected to grow to 3

million over the next 2 years due to the boom in the mobile space.
* The top two features being utilized by most users are ticketing and search.
* There are very few changes in usage of features like message boards.

» Traffic especially peaks twice a year: early summer (June) and the holiday
season (November and December).

» The number of times ticketing services is affected due to impact of other
services, such as product catalog, has grown considerably.

» Technological advances in natural language processing means that customers
no longer expect just keyword-based search. They want the system to
understand plain English and be able to search the tickets and help them
appropriately. In other words, they want semantic search.

 The greatest number of enhancement requests concerns ticketing
functionality.

It’s clear that our application is doing really well, as the number of customers
has expanded and the application is still serving. Furthermore, we can assume
that the application has scaled well horizontally to support the increase in users.
Scaling horizontally in this case means having many instances of the application
with active-active database machines with proper load balancing in place. The
point to note is that we are talking about uniform scalability; that is, the whole
application is scaled, not just some specific components, such as ticketing, that
might be have been needed to be scaled.

Now assume you are given the task to modify the application so that it can
meet the new needs and can scale and perform to support 3 million users. Also,
the application should be easy to evolve (open to change components) as the
technology changes.

Given what we have learned, microservices may sound like a great solution.
The application we deployed in Chapter 11 is not very old. In fact, it is already
using a model-view—controller (MVC) architecture and web services, so it
wouldn’t be a wise decision to start from scratch. Also, notice that the new needs
are applicable to only a few components of the application, which further makes
the case for microservices. So how do we do it? There are quite a few ways to go
about it. Let’s apply our learning from Chapter 4 and convert our existing project
to a microservices-based application.

Applying Microservices Criteria

Recall that the microservices criteria outlined in Chapter 4 define one of the
possible ways to select and prioritize the capabilities of a monolithic application
that should be migrated to microservices. We looked at seven best practices,
which apply in our scenario as we consider the new needs and user behavior:

* Scale. From the first two new requirements, it is clear we need to scale the

application. The two most important and highly used components are
ticketing and search, so it makes sense to convert these services to
microservices.

» Improved technology alternatives, or polyglot programming. From the
new requirements, we see that this system needs a smart search, and Apache
Solr is an open source tool readily available for these purposes. It will
improve the search capabilities by providing relevant, context-sensitive
results.

 Storage alternatives, or polyglot persistence. Our monolithic application
has been using the MySQL database for all the data storage needs. While it
makes sense for ticketing data to be stored in a relational database, our
application can be improved by storing product catalog data in an in-memory
cache with a flat-file backing store for the following reasons:

« It would allow for easier updates by simply dropping updated files.

* Since there are no relational queries or joins, simply reading the file in-
memory as a keyed list would increase speed.

* Changes. Given that most enhancements have been in ticketing logic, per
requirements, it makes sense to convert ticketing to a microservice. By the
same logic and per our new requirements, it would not make much sense to
convert the message board as a microservice.

* Deployment. In our application, there is no deployment complexity in any
given component, so we can call it not applicable.

» Helper services. Per the new requirements, the existing ticketing flows have
been impacted due to unavailability of, or issues with, the product catalog.
We must short-circuit this service, which means that even if the product
catalog goes down, our ticketing should work as expected. This requirement
qualifies the product catalog service to be converted to a microservice.

The only requirement we have not discussed is that of heavy seasonal traffic.
Basically, this issue can be addressed easily within the current version of the
application by adding application servers and databases to scale horizontally
during the high-traffic seasons and then shrinking them back during normal
traffic times. But based on what we know about microservices and the way we
are converting the existing services, it would be more cost effective to scale the
components with expected higher traffic. We cover this aspect of migration to
microservices in Chapter 13, “Case Study: Containerizing a Helpdesk
Application.”

Conversion Summary

Per the new requirements and our microservices criteria, we conclude that the
following services be converted to microservices architecture:

* Product catalog
* Ticketing

» Search

Further, we will add a Solr search engine to our application. In the current
application, searches are done by database scan, which is a very crude way of
implementing search functionality. This method simply matches text against
available data in the database. Neither the quality of results nor the performance
match the caliber of today’s technologies.

Let’s briefly discuss Solr. (For detailed installation and configuration
instructions, refer to Appendix B.) Solr is a search engine platform based on
Apache Lucene. It is written in Java and uses the Lucene library to implement
indexing. It can be accessed using a variety of REST APIs, including XML and
JSON. The basic capabilities include

» Advanced full-text search
* Optimized for high-volume web traffic
» Comprehensive HTML administration interfaces

» Server statistics exposed over Java Management Extensions (JMX) for
monitoring

* Linearly scalable, auto-index replication, and automatic failover and
recovery

* Near-real-time indexing
* Flexible and adaptable with XML configuration

* Extensible plugin architecture

For more information, visit http://lucene.apache.org/solr.

Impact on Architecture

After the product catalog, ticketing, and search services are converted to self-
contained standalone microservices, the architecture will look like Figure 12.1.

Customer Support Support Catalog Hs
App Engineer App Manager App us
ul
Catalog
Account :
5
{g e EE—— Search
: -
3 Authentication/ Message
= K Authorization Board /
DB o Ticketing
MySgql Helpdesk Data Store Apache Solr =

Figure 12.1 Our new architecture, with self-contained and standalone
microservices

As you see, services such as catalog, ticketing, and search are separated out of
the monolith paradigm and deployed as individual and independent
microservices. These individual microservices are deployed behind a load
balancer such as HAProxy for high availability and scale.

Converting to Microservices

Now that we understand the new microservices-based architecture, let’s convert

http://lucene.apache.org/solr

the identified three components of the monolithic application to independent
microservices. We cover the product catalog microservice conversion in detail
but leave ticketing and search for you to converted in a similar manner to get
some hands-on experience. You can also refer to the code base posted on GitHub
at https://github.com/kocherMSD/Helpdesk_Microservices.git.

Product Catalog

For this project, we migrate catalog service-specific code out of the monolithic
helpdesk application into its own build entity. This involves taking out the
interfaces, service implementations, helper classes, and configuration files and
creating a new build artifact. This new build artifact includes reference to only
those third-party dependencies actually required by the new build artifact.

Next, we modify the catalog service to use Apache Maven instead of Apache
Ant, mainly because Apache Maven is a newer, more flexible build system that
has superior external dependency management features.

Last, we modify the catalog service build artifact to upgrade third-party
external dependencies to the latest major release. By doing so, we gain the
ability to leverage improved implementations of third-party dependencies.

Following are the detailed steps for the product catalog microservice
conversion.

Steps for Conversion

We create the product catalog microservice by reusing the monolithic application
code base. Basically, it is going to be a separate project and a service in itself.
Here are the steps:

1. Create a new project in Eclipse named catalog-svc.

2. Download and install Apache Maven. Refer to
https://maven.apache.org/install.html.

3. Create a Maven pom.xml file, and define the required dependency for the
project in the root directory. You can find the details in the code posted on
GitHub:
https://github.com/kocherMSD/Helpdesk_Microservices/blob/master/catalog
svc/pom.xml.

4. Create the service interface, service implementation, service helper, data
access object (DAO) classes, and application context XML file.

https://github.com/kocherMSD/Helpdesk_Microservices.git
https://maven.apache.org/install.html
https://github.com/kocherMSD/Helpdesk_Microservices/blob/master/catalog-svc/pom.xml

Based on the microservice definition, we will have a single interface, service
implementation, service helper, and service DAO Java class. Here is the
pseudocode for our service, but you are strongly encouraged to look into this
code, which is available on GitHub:

a. Service

interface pseudocode:

Click here to view code image

public

interface CatalogService extends BeanFactoryAware,

ApplicationContextAware {

public abstract ProductDetailsResponse getCatalog(

@Context HttpHeaders headers,
String userId)

throws ServicelnvocationException;

public abstract CatalogResponse addCatalog(

public

public

}

@Context HttpHeaders headers,
CatalogRequest req)
throws ServicelnvocationException;

abstract CatalogResponse updateCatalog (
@Context HttpHeaders headers,
CatalogRequest req)

throws ServicelnvocationException;

abstract CatalogResponse deleteCatalog(
@Context HttpHeaders headers,
CatalogRequest req)

throws ServicelnvocationException;

b. Service implementation pseudocode:

Click here to view code image

public
Catalo

@Component

@Path ("/CatalogService")

class CatalogServiceImpl implements
gService {

@Override

@GET

@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})

@Path ("/getCatalog/{customerId}")
public ProductDetailsResponse getCatalog(
@Context HttpHeaders headers,
@PathParam("customerId") String customerId)
throws ServicelnvocationException {
//To Do Task

}
c. Service helper pseudocode:
Click here to view code image

public class CatalogServiceHelper {
CatalogDao dao=null;
//To Do
}

d. DAO class pseudocode:

Click here to view code image

public class CatalogDao extends DataService({
//To Do

5. Modify the applicationContext.xml file for only this microservice’s beans.

The new project structure should look like Figure 12.2.

[¥ k55 > catalog-svce [projects NO-HEAD]

¥ % > src/main/java
> 3 > org.helpdesk.commons.exception
> i3 > org.helpdesk.db.dao
> {3 > org.helpdesk.db.model
> 3 > org.helpdesk.helpers
> 3 > org.helpdesk.services
> 3 > org.helpdesk.services.impl
> {3 > org.helpdesk.services.request
> §: > org.helpdesk.services.response
> {3 > org.helpdesk.utils

> (% > src/mainfresources
(® sreftest/java

b = Maven Dependencies

> =i JRE System Library [JavaSE-1.8]

> 55> src

P (-5 > target
3 pom.xml

Figure 12.2 The new project structure

6. Runmvn install from the pom.xml. This will create a catalog-svc WAR
file.

7. Deploy the WAR file on the same monolithic application Tomcat server:
http://<host>:<port>/catalog-svc/rest/catalogservice/<Rest Verb>. The web
service endpoint for our standalone microservice will be changed.

8. Remember that we are still using the same database. Before building the
WAR file, change the database configuration in applicationContext.xml as
follows; change the url, username, and password properties of the
DataSource bean according to your database credentials:

Click here to view code image

<bean id="DataSource" destroy-method="close"
class="org.apache.tomcat.jdbc.pool.DataSource">

<property name="driverClassName"
value="com.mysql.jdbc.Driver" />

<property name="url"
value="jdbc:mysgl://<dbhost>:
<dbport>/<dbname>"/>

<property name="username" value="<Username>"/>

<property name="password" value="<Password>"/>

<property name="initialSize" wvalue="5"/>

<property name="maxActive" value="50"/>

<property name="validationQuery"
value="select 1 from dual"/>

<property name="testWhileIdle" wvalue="true"/>

<property name="testOnBorrow" wvalue="true"/>

<property name="minIdle" wvalue="020000"/>

<property name="minEvictableIdleTimeMillis"
value="30000000"/>

<property name="timeBetweenEvictionRunsMillis"
value="6000000"/>

<property name="removeAbandoned" wvalue="true"/>

<property name="removeAbandonedTimeout"
value="30000"/>

<property name="logAbandoned" wvalue="true"/>

<property name="maxWait" wvalue="120000"/>

</bean>

Ticketing

Similar to the product catalog, migrating the ticketing service—specific code out
of the monolithic helpdesk application into its own build entity also includes
taking out the interfaces, service implementations, helper classes, and
configuration files and creating a new build artifact. This new build artifact
includes reference to only those third-party dependencies actually required by
the new build artifact.

The ticketing service will be modified to use Apache Maven instead of Ant for
the same reasons we used it in the product catalog service modification.

The steps for the ticketing microservice conversion are exactly the same as for
converting the product catalog service.

Search

As discussed, we have a very rudimentary database-based search service. Now
we are going to add the Solr search component to provide us with advanced
search capabilities. We will still perform searches the old way, but we will also
perform the Solr-based search and show results from both on the user interface,
indicating them as basic and advanced. For that reason, we will also modify the
search view to include this enhancement.

Database-Based Search

Search service—specific code is migrated similarly to the way we migrated it for
the other two services. The effort includes taking out the interface, services
implementations, helper classes, and configuration files and creating a new build
artifact. Again, we will leverage Apache Maven, which will help in getting third-
party external dependencies required by our service.

Solr-Based Search
The first step in adding Solr-based search is to install and configure the Solr
engine. Refer to Appendix B for detailed instructions. Once it is up, we can
create our microservice. We will build an advanced search service as a separate
entity and also leverage Apache Maven here to build our artifacts.

Following is the Solr implementation code snippet from the same search web
service:

Click here to view code image

@POST

@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})

@Path ("/solrSearch")

public QueryResponse search (

@Context HttpHeaders headers,

SearchRequest request)

The code to query the Solr interface follows:

Click here to view code image

HttpSolrServer solr = new HttpSolrServer (
"http://<ip of solr host>
:8983/solr/helpdesk") ;
SolrQuery query = new SolrQuery();
query.setQuery (request.getQuery());
query.setStart (0);
QueryResponse response = solr.query(query);

You can do a lot with the Solr, such as apply search filters, but these topics are
out of this book’s scope. For more information, refer to
http://lucene.apache.org/solr.

Now, let’s review the application build and deployment process.

Application Build and Deployment
We have converted the following three components from the monolithic
application and created them as individual microservices:

* Product catalog

* Ticketing

» Search

Let’s look at what changes have gone into these microservices, including how
to build, configure, and deploy them.

Code Setup

The original monolithic application used Apache Ant to build the project. As the
evolving project based on microservices has become increasingly modularized
and must manage dependencies, the individual microservices have adopted
Apache Maven as the build tool. Ant has no built-in capability for dependency

http://lucene.apache.org/solr

management, although it can be supplemented with Ivy. This illustrates a key
concept: that each microservice can have its own way of building its source code
if required.

Code for these individual microservices 1is available at GitHub:
https://github.com/kocherMSD/Helpdesk_Microservices.git.

Building the Microservices

You can build individual microservices in two ways: via the command line or
automatically from an integrated development environment such as Eclipse:

* Building via the command line. To build a Maven project via the command
line, run the mvn command from the command line. The command should be
executed in the project directory that contains the relevant POM file. To build
the individual microservices, the command to run is mvn clean
package. This command ensures the artifacts are cleaned up and packaged
into a WAR file that’s ready to be deployed.

* Building from Eclipse. Once you have the project imported into Eclipse,
right-click the project name, choose Run As, and select Run configurations.
In the Run configurations window, enter clean package against the goals
field and click Run. This should build the code clean and produce the WAR
file, which is ready to be deployed in an application container such as
Tomcat.

Deploying and Configuring
There are quite a few options for deploying microservices. Each option has its
pros and cons, so let’s quickly see what they are. In Chapter 13, we’ll delve

deeper into the deployment space along with automated deployment, scaling,
and so on.

» Multiple microservices within a single machine. In this option, the strategy
is to deploy more than one microservice within the same machine (physical
or virtual). The major advantage of this approach is that the resource usage is
relatively efficient because multiple services or instances are sharing the
same resources (CPU, memory, I/O, etc.). The drawback is that there is little
or no isolation of these services unless each service is a separate process.
Also, a misbehaving service can potentially consume all of the memory or
CPU of the host.

https://github.com/kocherMSD/Helpdesk_Microservices.git

 Single microservice per virtual machine. The major benefit with this
approach is that each service runs in complete isolation because it’s wrapped
inside a virtual machine. Each microservice has full access to its allocated
memory, CPU, and I/O. However, the major drawback with this approach is
the lack of efficient resource utilization. Virtual machines may well be
underutilized, but again, this drawback can be overcome by allocating
sufficient resources and putting the virtual machine on auto-scale.

* Single microservice per container. Deploying a microservice in a container
is simply packaging the service to run inside a container. Once you have the
service packaged in a container, you can launch containers at will, depending
on the varying, on-demand, and real-time application needs. The benefit of
this approach is that each container runs in isolation. Resources consumed by
the containers can be monitored, controlled, and managed. However, unlike
virtual machines, these containers are very lightweight and easy to build,
package, and start. They start extremely fast because there’s no operating
system to bootstrap like with a virtual machine. The major disadvantage of
this approach is the technological? maturity. With the advent of Docker in
2013, containers are far more accessible to mainstream teams now; however,
the technology is still evolving to address issues such as security, managing
containers at scale, and so on.

For simplicity, we will deploy our new microservices in the same Tomcat
server where we have hosted the monolithic application. In Chapter 13, we’ll
take these microservices and package them in a Docker container and deploy
them as individual microservices.

Following are the steps to deploy the helpdesk application with the new
microservices:

1. We need to point the newly created microservices from our existing
monolithic application. To do so, modify the property file,
Application.properties, by changing the endpoints for our web services, as
follows:

Click here to view code image

endPoints.serachEndPoint=
http://host:port/search-svc/rest/SerachService/search
endPoints.getCatalog=
http://host:port/ticketing-svc/rest/CatalogService/getCatalog
endPoints.createTicket=

http://host:port/search-svc/rest/SerachService/search
http://host:port/ticketing-svc/rest/CatalogService/getCatalog

http://host:port/catalog-svc/rest/TicketService/
createTicket

2. To change the search view, modify the search.jsp file in the monolithic
application to include an advanced search button; call the Solr search web
service end point from the JavaScript function:

Click here to view code image

function solrsearch()
{
var solrSearchEndPoint=
<%= props.getProperty (
"endPoints.solrSearchEndPoint") %>';
var searchText=document.getElementById ("searchText") .value;
if (searchText=="'")
{

alert ('Empty text. Please provide value in text');

var dataToSend= {"query":searchText};

$S.ajax ({headers: {
'"Accept': 'application/json',
'Content-Type': 'application/json'

by

url: solrSearchEndPoint,

type: 'POST',

dataType: 'json',

data: JSON.stringify(dataToSend) ,

success: function (data, textStatus, jgXHR) {

$("#solrresults") .empty () ;

var docs = data.results;

$.each (docs, function (i, item) {
$('#solrresults') .prepend (S ('<div>" +
objToString (item) + '</div>"));

b):

var total = 'Found ' + docs.length + ' results';

$S('#solrresults') .prepend('<div>' + total + '</div>"');

}

}).fail (function (jgXHR, textStatus, error) {

// Handle error here

alert (JjgXHR.responseText) ;

b):

http://host:port/catalog-svc/rest/TicketService/

}

3. Create the individual microservices WAR files by building them separately,
as shown in Figure 12.3. Use the Apache Maven pom.xml, as outlined
earlier in this chapter.

TE;:;’;.’-:- catalog-sve [projects NO-HEAD]
> &5 > srcfmainfjava
> (%2 > src/mainfresources
(* srcftest/java
» =\ Maven Dependencies
P =\ JRE System Library [JavaSE-1.8]
P 3> sIc
P (-5 > target
n3 pom.xml

Figure 12.3 Structure for a microservice in Eclipse

4. Execute the Maven build, as shown in Figure 12.4.

) Undo Text Change
Revert File

xrs-json-provider-versions

=1
Open With >
Show In [3
d> Copy HC
{i Paste £ AT
Quick Fix 31
:‘: Source >
j Refactor >
[Properties
rg ?
d> Open Selection F3
.L?r }
>P L &5 1 Run on Server XOXR
Debug As > m2 2 Maven build XOXM
Prc-_flle As > m2 3 Maven build...
d> Validate m2 4 Maven clean
{s) E Liferay : m2 5 Maven generate-sources
aven @9 6 Maven install
rg 1eam > e 7 Maven test
d= Compare With >
{sl Replace with » Run Configurations...
'I.
Preferences...
rg
d>

Pe| 2 Remove from Context “C{r3E1

Figure 12.4 Executing the Maven build

You should see the message shown in Figure 12.5 if the build is successful.

[INFO] Processing war project

(INFO] Copying webapp resources [foptfprojects/BOOKCODE catalog-sue/sre/mainfwebapp]
[INFO] Webapp assembled in [1523 msecs]

[INFO] Building war: foptfprojects/BO0KCODE catalog-suc/target/catalog-suc.war

[INFO] WEB-INFfweb.xml slready added, skipping

[INFO]

[INFO] --- maven-install-plugin:2.4:install [default-install] @ catalog-sve ---

[INFO] Installing fopt/projects/BO0KCODE/catalog-suc/target/catalog-suc.war to fUsersfanujsin/.m2frepositoryforg/helpdesk/services/catalog-suc.
[IRFO] Installing fopt/projects/B00KCODE catalog-suc/pom.xml ta fUsersfanujsin/.m2/repository/org/helpdesk/services/catalog-sve/l.0.0/catalog-

[INFD] ====cccccccccccccssccccsccsssssssscssssssssscsssecssssssssssssssssannans
[INFO] BUILD SUCCESS

111 U S UM
[INFO] Total time: 7.783 s

[INFO] Finished at: 2017-09-10T16:24:17-05:00

[INFO] Final Memory: l14Mf210M

1L

Figure 12.5 Build output

5. Follow the previous steps for the rest of the microservices. Copy all these
WAR files into the Tomcat webapp directory.

Your deployed directory structure will look like the following in Linux:
Click here to view code image

search-svc catalog-svc docs helpdesk host-manager
ROOT ticketing-svc.war search-svc.war catalog-svc.war
examples

helpdesk.war manager ticketing-svc

As you can see, along with helpdesk.war, there are three additional
microservices deployed in the same Tomcat container.

New Requirements and Bug Fixes

We have successfully migrated our monolithic application architecture to
microservices based on new business needs. We also know business needs will
continue to evolve. Let’s look at some ways to manage possible change requests
with a microservices-based architecture.

Suppose we need to add to the view-ticket service an extra parameter that has
limited to no dependency on other components. Using the following code
snippet, we can change the ticket request:

Click here to view code image

public TicketResponse createHdTicket (
@Context HttpHeaders headers,
TicketRequest ticketRequest)

throws ServicelnvocationException({

The following adds a new property to the Plain Old Java Object (web model):

Click here to view code image

@Component
private String emailAddress;
@XmlElement
public String getEmailAddress () {
return emailAddress;
}
public void setEmailAddress (String emailAddress) {
this.emailAddress = emailAddress;

The following code allows us to add logic to the DAO layer to get that
property from the database:

Click here to view code image

private String saveToDatabase (TicketRequest ticketRequest) {
//added with existing one
ticket.setEmailAddress (ticketRequest.getEmailAddress());

Notice that this ticketing change does not affect any other service. We just
need to test this service and deploy it, and we should be good to go. Making this
change in a monolithic application would require us to build the complete
application and do thorough regression testing, which is time- and resource-
consuming. It is a simple example, but it illustrates the difference between
making a change in a microservices application and making the same change in
a monolithic application.

Now let’s go through the same challenges we highlighted with the monolithic
application in Chapter 11 to see if microservices really helped solved those
challenges:

» Addressing bugs. Only the portion of the application that has the bug needs
to be fixed. If the bug is in the code of one microservice, then we just need to
touch that particular microservice, fix the code, and deploy. Also, since each
microservice will be load balanced in a typical deployment, you can deploy
the fix serially so as to not impact the application availability. If the bug is in
the monolithic code, you still need to follow the normal process, but notice
that the microservices remain untouched and no retesting of those
components is required; hence, there is a reduced release cycle time.

* Replacing application components. Let’s assume the same case where we
want to use cloud services for ticket management; all we need is a
configuration change, as we discussed earlier in the chapter, to point to the
cloud service end points. Simple enough!

* Replacing or adding new technology stack. If it ever makes sense to
develop an existing or new service using a different technology stack, say
PHP/NOSQL, the developer has full freedom to do so with minimal
dependencies.

* Scaling selectively. One of the biggest advantages of microservices is
selective scaling. As you noticed in the new architecture diagram, each

microservice can be load balanced. If there is more traffic expected on the
ticketing layer, you can easily spin up more virtual machines or containers for
the ticketing service without touching any other service or monolithic part of
the application. This saves time, resources, and expenses on unnecessary
scaling of the complete application. We will do this in the next chapter.

» Handling faults. An issue or bug in a particular microservice will not impact
the whole application if designed properly. The worst-case scenario may be
that a particular microservice could be impacted, but the rest of the system
will still be functional. Think of an e-commerce site based on a monolithic
architecture. Say the product rating part of the application crashes.
Depending how the monolithic application is written, this may bring down
the whole application even though there were no issues with, say, the cart and
checkout part of the application. With microservices, the worst outcome of a
product rating microservice crashing would be that users cannot submit
ratings. Since shopping cart and checkout services are up, users will still be
able to complete the shopping, causing limited impact to business.

Scalability is the biggest challenge. Running a few microservices is fine, but
they are meant to comprise large systems, with thousands of microservices and
lots of scaling up and down. Let’s now go and containerize our microservices in
the next chapter so we can scale and manage them more easily.

Chapter 13

Case Study: Containerizing a
Helpdesk Application

In Chapter 12, “Case Study: Migration to Microservices,” we created three
microservices based on our needs and the criteria we learned throughout this
book. The next question becomes, how do we scale this model? In the real
world, a large-scale application may have hundreds to thousands of
microservices. In this chapter, we use our knowledge of Docker containers to
deploy and scale the microservices on demand.

The monolithic part of our application will continue to run as is, but we will
containerize the microservices part of the application, which includes ticketing,
product catalog, and search, and make appropriate changes to the monolithic
application.

Containerizing Microservices
In this section, we containerize the product catalog microservice we created in
the Chapter 12. Armed with our knowledge so far, containerizing microservices
involves the following steps:

1. Make a list of dependencies required for each microservice.

2. Build the binaries, WAR files, and so on, that compose the microservice.

3. Create a Docker image that includes items in the previous two steps.

4. Use the image created in step 3 to launch one or more containers.

Listing Dependencies

Here is the list of software that’s required (dependencies) to run the product
catalog microservice:

» Tomcat: Required to run the application (product catalog) code

+ Java: A dependency for Tomcat to function properly

* MySQL connector: A dependency for Tomcat to connect to MySQL

» Apache Maven: To be installed on the system where you are building your
microservice (for reference, see https://maven.apache.org/install.html)

Build Binaries and WAR files

Now that we have identified the dependent software required to run the catalog
microservice, the next thing we need is the WAR file (binary) itself. Please
follow the following instructions to build and produce a WAR file for the catalog
microservice. For this task, clone the code from the GitHub repository for our
catalog microservice:
https://github.com/kocherMSD/Helpdesk_Microservices.git

Since we are building our first microservice, we should take advantage of the
latest toolset available. In this case, we use Apache Maven to build the WAR file
instead of Apache Ant (as we did for our monolithic application) because Maven
is a more advanced build automation tool.. For example, it also downloads the
library dependencies required for the project.

The next task is to verify that the Apache POM file is located in the root
directory of your cloned code. The POM file consists of the dependencies, such
as the Java Runtime version, the Maven central repository information, and a list
of required JAR files.

If it is all there, then the next step is to build the WAR file. Run mvn
install from the command line at the project root directory, or right-click on
the POM file in the Eclipse editor and select mvn install. A folder named Target
should have been created in the root directory, which will have the WAR file.

Creating a Docker Image

Let’s look at how to create a Docker image for our product catalog service. The
approach to create images for other microservices, such as ticketing, is the same
except that you include the appropriate binaries of the chosen microservice and
the environment dependencies.

As we learned in previous chapters, the right way to create a Docker image is
through a Dockerfile, which includes all the dependencies mentioned previously.
Building that Dockerfile will give us the image we need to deploy our service.

Let’s start writing the Dockerfile. Please note we’ll be building this file in
multiple steps so that it is easy to explain the content. Make sure you don’t
create multiple files if you are executing things in parallel:

https://maven.apache.org/install.html
https://github.com/kocherMSD/Helpdesk_Microservices.git

Click here to view code image

Based on Ubuntu 17.04

FROM ubuntu:17.04

Environment variables to install Tomcat 7; you may change the
minor version of Tomcat according to your needs. To change the
major version as well (e.g., to Tomcat 8), you must be sure to
change the TOMCAT LOCATION variable as well.

ENV TOMCAT VERSION=7.0.81

ENV TOMCAT FILENAME=apache-tomcat-$TOMCAT VERSION.tar.gz
ENV TOMCAT_DIRECTORY=apaChe—tomcat—$TOMCAT_VERSION

ENV TOMCAT LOCATION=http://www-eu.apache.org/dist/tomcat/ \

tomcat—7/V$TOMCAT_VERSION/bin/$TOMCAT_FILENAME
Let’s take a closer look at some of the code:

* FROM ubuntu tells what environment the catalog service will run in. In
this case, the catalog service will be running under an Ubuntu environment.

* The ENV command defines environment variables that can be used within the
Dockerfile.

The next step is to pull and install all the dependencies. Append the following
to the existing file:

Click here to view code image

Fetch Tomcat; install required utilities such as wget & JDK1.8.
Clean up apt cache, as "apt-get update" is going to bust the cache
always.
RUN apt-get update && \
apt-get install -y wget && \
apt-get install -y default-jdk && \
rm -fr /var/lib/apt/lists/* && \
wget $TOMCAT_LOCATION

Here’s what we’re doing with this code:

* apt-get is the package manager in Ubuntu, which simplifies the lifecycle
(install/update/delete) of packages. It is recommended to always do an apt-
get update. This command gets the latest list of packages and their
versions from the Ubuntu repository.

http://www-eu.apache.org/dist/tomcat/

* The apt-get install command installs the Wget package. Wget is a
free utility that’s used to download files from the web. We need this utility to
download Tomcat from the web.

* The install command installs the Java development kit. This is a
dependency for Tomcat.

* When the command apt-get update is run, it downloads the packages

from the Ubuntu repository and stores them in the directory named
/var/lib/apt/lists. This directory could be large, which can make our Docker
image look big too. Since the installation is complete, we can safely remove
the contents in this directory, and that’s what the rm command does. It’s a
best practice in writing Dockerfiles.

* wget is the utility we installed earlier in the code, and it downloads Tomcat
from the web.

One key thing to note is that all of these commands are run in a single line to
reduce the number of layers in the Docker image. RUN is the command that
instructs Docker to run any command within the environment (in this case, it’s
the Ubuntu environment). If we choose CentOS as the environment (e.g., FROM
Cent0S), then the same command will become RUN yum, because yum is the
package manager in CentOS just as apt-get is the package manager in
Ubuntu.

Now that we have downloaded Tomcat, let’s append the following to the
existing file:

Click here to view code image
Install Tomcat under /opt and rename the directory "tomcat"

RUN tar -xf S$TOMCAT FILENAME -C /opt && \
mv /opt/$TOMCAT DIRECTORY /opt/tomcat

Here, we are installing Tomcat into our /opt directory and then renaming the
directory /opt/tomcat.

Now let’s deploy our microservice:

Click here to view code image

Deploy product catalog service to Tomcat
ADD catalog-svc.war /opt/tomcat/webapps/

Expose port to the host system

EXPOSE 8080

Run tomcat in the foreground
CMD ["/opt/tomcat/bin/catalina.sh", "run"]

Let’s look closer at this snippet:

» The ADD command instructs Docker to copy the catalog-svc.war file to the

Tomcat webapps directory because we want the catalog service to start as
soon as the container is launched.

* Expose is a command that exposes Tomcat’s port to the host machine on
which the container is running.

* CMD is the default command that gets executed when a container is launched.

By starting Tomcat as the default command when a container is launched, we
get two things: first, Tomcat is started automatically, and second, the product
catalog service is deployed automatically.

Here is the complete file for reference:

Click here to view code image

Based on Ubuntu 17.04

FROM ubuntu:17.04

Environment variables to install Tomcat 7; you may change the
minor version of Tomcat according to your needs. To change the
major version as well (e.g., to Tomcat 8), you must be sure to
change the TOMCAT LOCATION variable as well.

ENV TOMCAT VERSION=7.0.81

ENV TOMCAT FILENAME=apache-tomcat-$TOMCAT VERSION.tar.gz

ENV TOMCAT_DIRECTORY=apaChe—tomcat—$TOMCAT_VERSION

ENV TOMCAT LOCATION=http://www-eu.apache.org/dist/tomcat/ \
tomcat—7/v$TOMCAT_VERSION/bin/$TOMCAT_FILENAME

Fetch Tomcat; install required utilities such as wget & JDK1.8.
Clean up apt cache, as "apt-get update" is going to bust the cache
always.
RUN apt-get update && \
apt-get install -y wget && \
apt-get install -y default-jdk && \
rm -fr /var/lib/apt/lists/* && \

http://www-eu.apache.org/dist/tomcat/

wget STOMCAT LOCATION

Install Tomcat under /opt and rename the directory "tomcat"
RUN tar -xf $TOMCAT_FILENAME -C /opt && \
mv /opt/$TOMCAT DIRECTORY /opt/tomcat

Deploy product catalog service to Tomcat
ADD catalog-svc.war /opt/tomcat/webapps/

Expose port to the host system
EXPOSE 8080

Run tomcat in the foreground
CMD ["/opt/tomcat/bin/catalina.sh", "run"]

Now let’s use this Dockerfile to build a Docker image for the product catalog
service.

Building the Docker Image

Using the Dockerfile we just created, enter the following command on the
command line:

>> docker build -t catalog-svc:1.0 .
Let’s review what the command does:

* docker build isthe command used to create a Docker image.

» —t is the option to specify a name for the created image (in our case,
catalog-svc:1.0), whichincludes ImageName : <Tag>.

* The ending . tells the Docker build command to use the files in the current
directory.

To run this command, you need to do the following:

1. Make sure that Docker is installed.

2. Create a directory that has the Dockerfile we created and the WAR file for
the catalog service.

3. Run the Docker build command from the directory created in step 2.

Now that we have created the Docker image for the product catalog service,
we are ready to use this image and spin up the catalog service (inside Docker
containers) on the fly. Before we can spin up our catalog service, we need
infrastructure where these services can run. We discussed Mesos and Marathon
in previous chapters, and we’ll be using it to spin up our microservices.

A fast way to get started is to utilize a DC/OS (datacenter operating system),
an open source distributed operating system software based on Apache Mesos
that provides an easy way to get Mesos, Marathon, and Marathon-Ib set up
quickly. We’ll set up the framework within Amazon Web Services (AWS); the
rest of this chapter is based on that. For more information on DC/OS, visit
https://dcos.io.

DC/OS Cluster Setup on AWS

To spin up our microservices, we leverage the DC/OS cluster, so let’s set it up
first. There are a few different ways to set up a DC/OS cluster; the easiest option
by far is to spin up a cluster in AWS. (You will need an AWS account to spin up
this cluster. For detailed documentation, refer to the following webpage:
https://docs.mesosphere.com/1.7/administration/installing/ent/cloud/aws/.)

When accessing the EC2 instances in Amazon, be aware that Amazon enforces
best practices such as Secure Shell (SSH) keys instead of using usernames and
passwords. It uses public key cryptography to encrypt and decrypt user
credentials such as login information.

Let’s create a key pair, which we will use during our DC/OS cluster creation:

1. From the AWS console, under Network & Security, click Key Pairs. See
Figure 13.1.

https://dcos.io
https://docs.mesosphere.com/1.7/administration/installing/ent/cloud/aws/

ECZ Dashboard Rosourcoes &

You afd wiang the iswing Amazen ECT resources in the US East (N. Vinginka) region:

Instances
Spot Requests

Rietecved Instances ®
Just nowd b sirnphs virhual pevate sonver? Gl avenything you need 1o jumpalan your peoset - compube, slonge. ind robworing = for b bow, prodiclabie

Scheduled Instances pricd. Try Amason Lighbasd kor fres

Dedicated Hosls
O brages Create Instance
Adbls
e To start using Amazen EC2 you willl wam b Busch a virlual server known an Amazon EC2 instance

B Elaste Blotk Sieee m
o Yo e

Volumes sarcos wil lanch i e U5 Eaat (M. Virgesa) region
Snapshots
& Hetwack & Security Service Health T Scheduled Events c
Secunty Grougs Service Status: US East (M. Virginka):
Elastc IPs o US East (N, Vieginia) MO T
Plademdm Groups This savvios b operating normaly
Kay Paics. Avallability Zore Status:
Bopdworic Inborfacos
& wi-naat-la

Figure 13.1 Representation of AWS console

2. Provide a name for the key pair to create one.

3. Save the newly created key pair in a secure place. We’ll need it during our
cluster creation shortly.

Now let’s create the DC/OS cluster using the following steps:

1. Launch the DC/OS template at
https://dcos.io/docs/1.7/administration/installing/cloud/aws. Click Launch
the DC/OS template, which is step 1 under the Install DC/OS section of the
page.

2. Choose a cluster type (single or multimaster). For testing purposes, a single
master is sufficient. For production systems, multimaster setup is highly
preferred to avoid single points of failure.

3. In the next screen, as shown in Figure 13.2, accept the defaults and click
Next.

https://dcos.io/docs/1.7/administration/installing/cloud/aws

CloudFormation /| Stacks = Create Stack

Create stack

Faloct Template Select Template

Spocify Dotads

Qptions Seloct the lemplate thal describes the stack you want to croale. A stack is o group of related rescurces thal you manage a5 a singhe uni,
Rirvirw

Design atemplate Use AWS CloudFormation Doskgaor to create or medify an existing template. Loamn more,

Chooso a tomplate Atemplate 8 JSONYAML-formatted test file that deseribes your stack's resource and thelr prepedies, Learn mane,
O Sebect a sample template

(v)
O vplead a template te Amazen 53
Mo fie selected,
O Spocity an Amazan $3 template URL
I hilpsiadus-wisl-2 DMAronaws. Cor hc0g. i (Easlyf nmili1- I
View/EcE template in Desigrer

Figure 13.2 Representation of selecting default template

4. In the Create Stack page, select Specify Details on the left, shown in Figure
13.3. Provide a name for the cluster, and from the dropdown, select the key

pair that was created earlier.

CloudFormation | Stacks ~ Groato Stack

Create stack
Saiu Teerglate 2
Spaify Deticts smlﬁf Detaits S ——
[Fgaety b VLBOH Pl] D AT vt Wiy (8% A OF DRRA T (e [t Rt wlell e D] i Tk RS Ol (matn Wl Le s
Erdee

P —

Parametors

Ky [m-n- v'!
Bagaired Bowsty s WS 1CE Ky
[P] [u [[P ——
Sarssammiloent | 8 | Raguired Spacdy to smbue ol privit o raln o gt B P
1 | Mo Saacity o s o gt g 44,4 B T P

e I

Figure 13.3 Representation of specifying stack details

5. Next, choose the number of public and private agent nodes, or in this case,
leave the default count.

6. Accept defaults in the rest of the screens and finish the stack creation.

It should take 10 to 15 minutes to create the DC/OS cluster successfully. You
may watch the stack creation status at CloudFormation — Stacks, as shown
in Figure 13.4:

Introducing StackSals

A Suachcan i & orusrey for 8 ser 0f ST Cauei ormane sncin e Sm v M) DU SLACHY I Saitgin INE Bcoourns aeil AVE Begrors Gystn Uhep serh fens Corvain B gt 1iartent

() (e .

e Kama Covatid Tima Sistn Dencription

Dbl 237 Pl 1530 0 UTC5000 CRILAFE o il 3 Dl dvh ome st Breglat

Owerview | Outpess | Bestwrces Dveets | Tomple | Fasmeters Togs | Buei Felicy ChangeSes amEs

Select a stack

Figure 13.4 Representation of stack live status

7. Once the stack creation is complete, go to the Outputs tab and copy/paste
the mesos-master URL to your browser. You should see the DC/OS user
interface (UI) launched successfully from the system dashboard shown in
Figure 13.5:

Goog-doma
EEECEEET

1) Dastboses

Vigw al 1) Compgpranty

Figure 13.5 System dashboards

8. From the cluster UI, go to Universe on the left and search for Marathon.
You should see a screen similar to Figure 13.6. Click the Install buttons for
Marathon and Marathon-Ib.

hioces AL MG
& Univarss
| hnkord
15}

@ marathon-Ib
=)

Figure 13.6 Installing Marathon and Marathon-1b

With this, we have successfully installed DC/OS cluster. Let’s look at the
overall picture of our application using a logical diagram, as shown in Figure
13.7:

b <l
~ Database =

ra B
Catalog Ticketing
service service
Rest of the
monolithic o 3=
application
Search
I) service
LN 4
DC/OS cluster

Figure 13.7 Application logical diagram

Notice that the services we split and packaged as microservices (catalog,
ticketing, search) are the ones that will be deployed and managed within the
DC/OS cluster, while the rest of the application will work as is. These
microservices will continue to use the same database.

Figure 13.8 shows how our deployment will look logically on the DC/OS
cluster.

Ticketing
service

M
i A A service

R
A

Rest of the T

mon_c-iitl_‘nic < > H e Marathon

application o
M
L
B

Figure 13.8 Logical Application view

Let’s review at a high level what we learned in Chapter 9, “Container
Orchestration,” about Mesos and Marathon, so we can better understand our

deployment:

* Mesos. This is an open source Apache project that manages resources such
as CPU and memory on a cluster of machines. Tasks or services like product
catalog and ticketing will be running in the Mesos cluster.

» Marathon. This is another open source framework that works closely with
Mesos master to schedule tasks in the cluster. In our case, if we have to
schedule our catalog service to run inside the Mesos cluster, then we have to
go to the Marathon UlI, provide the details about the product catalog service
(e.g., Docker image for the service, listening port), and click Submit.

* Marathon-lb. This load balancer is based of the popular load balancer
HAProxy, and it works by automatically generating a configuration for
HAProxy on the fly. Here is how it works:

» It communicates to Marathon via APIs to get a list of tasks and services that
Marathon scheduled in the Mesos cluster.

« From Marathon’s response, it finds out what services are running in the
cluster, where they are running (i.e. which machine in the cluster), which
port the service is running on, and so on.

* It generates an HAProxy configuration, which is simply a request mapping.
The configuration has details; for example, “if a request comes to a service
endpoint, /abc,” then this request may be handled by servers a, b or c, where
a, b and c are the machines the service is running to handle the request /abc.

+ External applications will always reach out to Marathon-Ib to get the
services running in the Mesos cluster.

Now that our cluster is ready, let’s deploy our microservices. We deploy the
product catalog service here and leave the other two services for you to deploy
on your own in a similar fashion.

Deploying the Catalog Microservice

We start by deploying a single instance of the product catalog microservice, and
then we scale it up or down according to our needs.

To deploy the service into the cluster, we create a task that has all the details
about the service and our needs. This task is then submitted to the cluster
through Marathon.

Submitting a Task to Marathon

Let’s describe the task for our product catalog service. There are two ways to
submit a task to Marathon:

* Using a simple command, you can submit a Docker command directly—for
example, Docker run -P -d nginx. Simple, small tasks that do not
require major configurations can be submitted directly.

* When we want to describe the service with more details, we can use a JSON
file. The JSON file is a well-known, standard file format that uses human-

readable text to describe data. It uses key-value pairs to describe the data, as
we’ll see shortly.

We use a JSON file to describe our catalog service in detail and then submit
the task through Marathon. Here is our catalog microservice configuration file
(JSON):

Click here to view code image

{
"id": "catalog-external",
"container": {
"type": "DOCKER",
"docker": {
"image": "kocher/catalog-svc:1.1",
"network": "BRIDGE",
"portMappings": [
{ "hostPort": 0, "containerPort": 8080, "servicePort": 10000 }
I
"forcePullImage":false
}
by

"instances": 1,

"mem": 1024,

"healthChecks": [{
"protocol": "HTTP",
"path": "/",
"portIndex": O,
"timeoutSeconds": 20,
"gracePeriodSeconds": 10,
"intervalSeconds": 10,

"maxConsecutiveFailures": 10

Hy
"labels": {
"HAPROXY GROUP":"external",
"HAPROXY O VHOST":"ec2-52-207-255-252.compute-1.amazonaws.com"
}
}

Let’s review the submitted task in detail:

» id is an identifier for our catalog service. It is used to identify services
running in the cluster.

* The container section describes the Docker container for the product
catalog service. It has the following components:

* type indicates the type of container. It is DOCKER by default. Another
option is MESOS, which, in future Marathon frameworks, may support other
container types.

* image indicates which Docker image should be spun up when this task is
launched in the cluster.

* network indicates the type of network. We are using BRIDGE. There are
other types of networks, as we saw in Chapter 8, “Containers Networking.”

* portMappings: hostPort indicates what port should be exposed
within the host on which the container is running. containerPort, as
the name suggests, is the port exposed within the container. servicePort

is the port on which this catalog service is accessible via the Marathon-lb
load balancer.

« forcePullImage, if set to TRUE, forces Marathon to pull the latest

image from the Docker registry before it launches the task. The default
value is false.

* instances indicates how many instances of the catalog service must be
launched in the cluster.

» mem indicates how much memory should be allotted to the catalog service.

* The parameters in the healthChecks block section instructs Marathon to
perform a health check on the catalog service at the configured intervals.

* The 1abels section has the following labels:

* HAPROXY GROUP: The external label indicates to the Marathon load
balancer that this microservice must be accessible to the external world. If it
is made internal, then the same microservice will be accessible only from
within the DC/OS cluster and not accessible from the outside world.

* HAPROXY O VHOST instructs the Marathon load balancer to create a
virtual host for the service. Services with this label set will be accessible via
the servicePort and additionally at ports 80 and 443.

Now let’s go to the Marathon UI and submit this JSON file to launch our first
microservice in the DC/OS cluster. From the DC/OS Ul, go to Services and click
the Marathon link. Then launch the Marathon UI by clicking Open Service, as
shown in Figure 13.9:

(o] marathon

Heahy 3 Ackwe Tasla
43 3508 =) oB
oy i ']

- = R

Figure 13.9 Stack live status

You should see our running applications, as shown in Figure 13.10. From this
screen, launch Create Application. Choose Ports and Service Discovery, and
then click JSON Mode to provide our catalog.JSON.

Cigersies i Hopw Wi (1

Figure 13.10 Create application

You should see a new Application window similar to Figure 13.11:

O by B Wi [

Figure 13.11 New application

Hit Create Application, and after a few seconds, you should see that our
catalog service is up and running, as shown in Figure 13.12:

Figure 13.12 Running applications

Inspecting and Scaling the Service

If you click the catalog-external link from the applications, you will be able to
inspect further details about this service. Figure 13.13 shows that one instance of
this microservice is healthy. It also provides status, log information, version
number, and when it was last updated.

< Bxk Ot I Mew Windcrw [21

& MARATHON

eatiog-rernal I4ilcke-Slod-1 10 T-H145-400 SRR

Figure 13.13 Catalog external

Running a quick curl on the instance will return a list of products indicating

that the service is up and running normally, as shown in the following:

Click here to view code image

curl http://10.0.0.79:15973/catalog-svc/rest/CatalogService/getCatalog/p

"productFamilyListList": [
{

"productFamily": "Phone",
"productId": "iPhoneb",
"technologySolution": "N"

"productFamily": "Phone",
"productId": "iPhoneb6",
"technologySolution": "N"
}
1,
"responseErrorCode": null,
"responseErrorMessage": null,
"responseStatus": "SUCCESS"

To scale up this microservice, all we have to do is click Scale Application and
provide the number of instances. Let’s say we want to run two instances of this
service. We would click on Scale Application and enter 2. It should scale the
application in a matter of seconds, as shown in Figure 13.14. Under the Running
Instance column, you should see “2 of 2,” indicating that two instances of the
catalog service are now deployed in the cluster.

Figure 13.14 Scaling up the microservice

http://10.0.0.79:15973/catalog-svc/rest/CatalogService/getCatalog/pkocher

This is how easy it is to scale up or scale down a microservice within a DC/OS
cluster. Now that two instances of our catalog microservice are deployed in the
cluster, we will access this service from rest of the application.

Accessing the Service

How do we know where the service is running? If you recall from Chapter 3,
“Interprocess Communication,” this is one of the most challenging parts in
microservices deployment and architecture, as microservices may come up or go
down for various reasons, such as node failure or insufficient resources. If a
microservice goes down for any reason, then Marathon will detect the failure
and will work with the Mesos cluster to spin up another instance. It ensures that
the correct number of instances are always running in the cluster.

Marathon-lb, on the other hand, works with Marathon, through Marathon
APIs, to discover what services are running in the cluster, on what machines in
the cluster the service is running, on what ports, and so on. Once it discovers the
services running in the cluster, if servicePort is defined, then Marathon-Ib
exposes that port on itself through which the actual service can be reached.

Given this context, in our case, we have two instances of the catalog service
deployed in the cluster, and they have a servicePort value 10000, which
means the catalog service can be reached at http://<DNS name of the Marathon-
1b server>:10000.

To find out the Marathon-1b’s host name, you go to the DC/OS cluster running
in AWS, select the stack, and choose Outputs tab, as shown in Figure 13.15.

CloudFermation Tl | Stacks

0 Introducing StackSets

KIS SachSat @ Contane b & 48 oF AN o prmatnon saschi el SRws. o i CPRaie BLBTAE SFOSs. Madtipin AN Anrouis e AIVE Ragord S ok SLAC T8 {atid 14 (41 Hanad

) (Somee)

Filter:

Hlach Mame Croated Tene Satun Deacription

(] oL SO0 PO 1530 UTC- O REATE b L% ANS Clouslorsation Tomglate

Greardirm | Outputs | Rendwrces | Evests | Templste | Pacsmators | Toge | StackPolley | Change Set mEma

Ky Vit Do ription Eapeort Nwma

Denlddrenn s e kL L POV LRSI SO T o daal Y Marion Maaler
* L Emadingey Lo

Pt SrceBralidre Dt e Pt SLADDEGOR TGN SRS v il Fuliic alaves
1.0 smaronaw com

Figure 13.15 Representation of finding host name

The host name you see in the second row (PublicSlaveDnsAddress) is the
server where Marathon-Ib is running. So, to access the catalog service, access
this endpoint:

Click here to view code image

curl http://dcos-demo-PublicS1-106EEUP9510VX-628629381.us-
east-1l.elb.amazonaws.com:10000/catalog-svc/rest/CatalogService/
getCatalog/<userid>

Notice in this URL, port 10000 exposes the catalog service in the DC/OS
cluster. No matter how many instances of catalog service are up and running in
the cluster, the Marathon load balancer will discover them automatically and
expose them via port 10000.

Now that the catalog microservice is up and running in the DC/OS cluster, we
have to configure the helpdesk application to start using this microservice. It’s a
simple configuration change in a property file.

Updating the Monolithic Application

Our helpdesk application maintains a list of URLs for each service in a file
called Application.properties. This file is located under /usr/share/tomcat7/lib
directory.

You will have to change the property called endPoints.getCatalog with
the Marathon-1b URL as follows:

Click here to view code image

endPoints.getCatalog=http://ec2-52-207-255-252.compute-1.
amazonaws.com:10000/catalog-svc/rest/CatalogService/getCatalog

With this change, the helpdesk application will now start consuming the
microservice. As we saw earlier in this chapter, no matter how many instances of
the catalog service is spun up, the endpoint to access the service remains the
same. Marathon-lb will automatically discover where those instances of the
catalog service are deployed and will automatically route (and load balance) the
traffic to those instances.

In this chapter, we looked at the catalog service in detail, from breaking up and
building the catalog service as a microservice to deploying it in DC/OS and
configuring the monolith to start using the microservice. The steps to convert

http://dcos-demo-PublicSl-1O6EEUP951OVX-628629381.us
http://amazonaws.com
http://ec2-52-207-255-252.compute-1
http://amazonaws.com

ticketing and search microservices are exactly the same, and that is left as an
exercise for you. All the code and instructions are posted at GitHub.

As you can see, we have not only addressed all the needs highlighted in
Chapter 12 but also scaled our application and made it easier to scale further in
the future. That’s the power of combining microservices and containers.

Conclusion

In the preface, I said that I wrote this with two groups of readers in mind:
experienced software and systems engineers looking to roll up their sleeves and
get their hands dirty with some real-life examples and a deep-dive case study,
and executives and project managers—that is, non-programmers—who want a
high-level introduction to the topic. Whichever group you fall into—perhaps you
even have a foot in both—I hope you found the pages you read enlightening.

Each subject we covered about microservices and containers—discovery
services, API Gateway, Kubernetes, services communication, and more—is
worthy of an entire tome on its own. (Indeed, some of those topics already have
multiple books devoted to them!) What I wanted to do with this book was
provide a higher-level synthesis of those topics, providing you with just enough
to make the takeaways you need for your own job or career. Alone,
microservices enable the on-demand scaling of various software components.
Containers, meanwhile, help with virtualization, keeping everything lightweight
along the way. Together, they complement each other beautifully, making one
plus one equal three—the ultimate definition of synergy.

What Is DevOps?

In the opening chapters of this book, we examined some of the impacts
microservices and containers can have on organizations, but we did not talk
much about their potential impact on another hot topic of the moment: DevOps.
Today, many software organizations are moving toward the DevOps model, and
microservices and containers will be key enablers in this journey.

DevOps is a portmanteau—a hybrid term—that combines two software
engineering practices: software development and (IT) operations. The emphasis
is on increasing collaboration between these two practices in order to accomplish
the following:

* Increase software release velocity.
* Improve the product quality at a faster pace.

+ Automate various aspects of these two fields, such as code-building, testing,

packaging, releasing, and deploying.

Not surprisingly, the entire tech industry is scrambling to jump on the DevOps
bandwagon in order to reap the benefits of all that potential. So, what’s the
holdup? What challenges are Silicon Valley’s best and brightest facing that’s
preventing them from developing the proverbial golden egg—laying goose? The
biggest one is change. Many tools and practices are already in place in these
organizations to manage software development, testing, or release, and all these
must change. Not only that, organizational change may also impact existing team
structures, which in turn can require the recruitment of new skill sets. These
challenges should sound similar to those surrounding microservices.

Next, if you look at the goals behind DevOps, you can see microservices can
clearly enable this combination of software engineering practices. The
complexity of a monolithic architecture is broken down into manageable pieces
that provide just one capability each. Those pieces can be divided among
multiple teams such that each team can focus on its own piece. The result is
shorter development cycles and simpler, quicker deployments, reducing time to
market. These advantages, in turn, create the need for operations agility and
automation. Microservices need that kind of agile culture to be sustained, and
therefore push or enable the DevOps environment.

Given these advantages with DevOps, it might seem as though every
developer, architect, or organization would want to transition to a microservices
paradigm. Yet as we discussed earlier, it is not for everyone. Microservices are
the best fit for complex architectures—that is, software with many
functionalities and end users, rapid deployment, and scalability. In the very near
future, most companies, including many small and medium-size organizations,
will embrace this trend. Why? Five major reasons:

* An even more complex future of the software industry. Software-defined
networking, software-defined storage, software as a service, the Internet of
things, and platforms that handle complex communication between millions
of users and devices are some examples that come to mind when you talk
about where the software industry is going. There is a plethora of companies,
both big and small, getting into these fields, and as they move forward, they
will realize the need for a microservices-based architecture coupled with an
agile culture.

* New client types generating new needs. The most innovative companies are
developing solutions that are supported on all kind of new devices and

around the globe. Each family of devices has different sets of resources to
work with. Memory, processing speed, and storage are limited in some
devices and found in abundance in others. When all these devices with
different constraints try to access the same software, the software must
support their requests by hiding the complexity from the clients. Where is
this complexity going to be hidden? In the software itself! Which means the
software will become even more complex—hence the need for microservices
architecture that can support communication with different clients, as we
discussed in earlier chapters.

* User-driven complexity. Amazon and Netflix offerings have gotten complex
thanks to their innovation in simplifying and enhancing the user experience.
They would have probably survived with monolithic paradigms if their
numbers of users remained manageable. In fact, they continued on that path
in their initial years. As the emerging markets catch up to developed ones and
their millions (or billions!) get online, software will continue to grow more
complex to address the scalability, performance, and needs of different users.
This will cause more and more companies to feel the need for microservices,
which can address those issues.

* Job satisfaction. Monolithic means one platform worked on by one or more
development teams, sometimes divided by work type (e.g., frontend,
backend, user experience). One of the issues with this model is that one
backend engineering team may be responsible for building all the backend
code for required services such as billing, product catalog, shopping cart, and
so on (in the example of an e-commerce site). When the code and use cases
get complex, the team splits further and divides the work within backend
systems (common capabilities and the like). As the complexity increases,
they add more people and create new teams and complexity grows to the
point that any small feature update requires long cycles and deployment
times. Over time, teams become frustrated. Failed builds, rollbacks, and time-
consuming debugging can become the norm rather than occasional
roadblocks. Miscommunication and lack of collaboration occur, and in
particularly fraught situations, can end in finger-pointing, name-calling, and
even talent attrition. If implemented well, DevOps and microservices can
promote clearer separation of roles and responsibilities, which will enhance
collaboration between teams. Collaboration, in turn, drives up productivity,
which directly impacts the bottom line. The result? Job satisfaction all the
way around.

» Business benefits. A smart business will always adapt to new technologies
or paradigms if they can improve the bottom line and solve major challenges.
Microservices offers one such opportunity to the business to differentiate
itself from its competitors.

Time will tell, but given these reasons, the penetration rate of microservices
and containers will likely skyrocket over the next few years.

Only the Beginning

Although you have reached the end of this book, my hope is that these words
serve as a commencement more than a conclusion. In other words, while you
may have “graduated” from the School of Microservices and Docker, I assure
you there is still so much more out there to learn. Whether you consider this your
main course or merely your appetizer, I hope that I have whet your appetite for
more! I encourage you to read more and get involved with various online
microservices and containers communities and dive into more case studies
yourself. In conclusion, I hope this is both an ending and a beginning for you.
Time to get to work!

Appendix A
Helpdesk Application Flow

This appendix provides a functional overview of the helpdesk application. Think
of it as the user guide that presents the application capabilities for admin and the
customer.

In the real world, most support applications are integrated with order
management and customer management systems. As a result, there is a lot of
automation in place from the data movement perspective. For example, when a
customer is created in a customer management system, the customer information
is automatically pushed down to other systems, such as a support application.
For our purposes, we are considering the standalone helpdesk application, and
we have no integrations with upstream applications, so we will manually create
all the required data to explain this application.

There are three main types of users or roles in this application:

* Administrator. The so-called superuser, who can create and modify new
accounts, users, services, and so on. He or she can see all the data and can
access the backend systems such as databases.

» Customers. Users who purchased the product or service from the vendor.
Customers can create, modify, and check the status of tickets. They have
visibility to the tickets that they submit.

* Support desk engineer. A user who works on tickets submitted by
customers and has visibility to all the tickets.

Administrator Flows

This section lists all the functions available to application administrators to set
up and maintain the application.

Login
Every application needs to authenticate so that only legitimate users can use it.
The application takes the username and password for authenticating users, as

shown in Figure A.1. The username and password should be available in the
database. The application is already set up with the username admin and
password admin. You can reset them in the database directly.

Welcome

Username pkocher

Password s
Remember me

legin

Figure A.1 Application login screen

On successful authentication, the admin arrives on the landing page; this page
will have all the modules on the top menu, as shown in Figure A.2. Let’s review
each of them.

Figure A.2 Application capabilities for admin

Administration and Supported Products

The administrator can add new users (customers and support desk), newly
supported products, and sold products within the product catalog for the user, as
shown in Figure A.3.

New products are released at regular intervals and old ones taken out of
support or service. This is where the admin comes to add new supported
products or expire existing products that are going out of support. For example,
Figure A.3 shows a list of supported products, where Y is yes (supported) and N
is no (not supported).

ADMINISTRATION

Add Supported Products

Add Now User

Add Soid Product

SUPPORTED PRODUCTS

2 iPhonebs Agppia Phone 3
¥ PrerT Apply Phoni Y
& IPhoneTy Appha Pt ¥
5 SamSungNoes Samsung Phong L
L SamGgcted Samyung Prone ¥

Figure A.3 List of supported products within the Administration control panel

Add Supported Product

From here, the admin can add new supported products to the catalog, as shown
in Figure A 4.

Add Supported Products
» Product Family : Apple Phone
+ Product : iPhoneTs
+ Status : il

Figure A.4 Adding supported products to the catalog

Add New User

As discussed earlier, usually these kinds of activities will be automated and the
data will be entered in the upstream system. For the sake of understanding this
application, let’s create the data manually. As admin, let’s add a new customer
user to the helpdesk application, which will enable this particular user to submit
tickets. For example, we’ll create a customer user named Bob Black with user
ID Bblack, as shown in Figure A.5.

Add Mew User
= Account Id: 5692802
+ Userid: Bhlack
+ Password : S
+ First Mame : Baob
+ Last Name : Black
+ City : Austin
+ Country : us
+ Email : Bblack@company.com

Figure A.5 Our sample user’s account information

The user account for Bob has been created, but to enable him to submit a
ticket, we need to associate him with the product he purchased. Let’s create this
entry within Add Sold Product.

Add Sold Product

The admin can manually add the products a customer bought. Let’s say he
purchased an iPhone 7s, as shown in Figure A.6.

Now that we know about the admin activities, let’s get to the customer’s role.

Add Sold Product

« Userld: Bblack
« Account d ; 5692802

+ Product Family : Apple Phone j
» Product ; iPhone? j
+ Serial No - Mic2654

« Date 0910972014

Figure A.6 Our sample user’s iPhone purchase

Customer Flows

After the customer successfully logs in by using the credentials supplied by the
admin, he can see the options on the landing page, as shown in Figure A.7:

CREATE ANINCIDEMT MESTAGE BOARD WIEW NCIDENT MAKE APPOIMTMENT SEARCH

Figure A.7 Application capabilities for customer user

Let’s review these capabilities one at a time.

My Products

This console is called “Product Catalog Service” in our helpdesk application. It
is used to view the products available under the account of a logged-in user. It
shows the list of supported products he bought. In this example, Bob Black has
active support on iPhone 6 and iPhone 7 (the entry we just created in the
Administrator section), as shown in Figure A.8.

Figure A.8 The My Products console, also known as the product catalog

Create an Incident

Say this customer wants to create an incident for a mobile device he bought
recently: an iPhone 5. Using his identity, the application looks up the products he
bought and allows him to create an incident based on his selection. The customer
uses the UI screen shown in Figure A.9 to create the ticket. To describe the issue,
he fills in the required fields such as title, problem severity, phone model, and
issue category; then he submits the incident.

CREATE CASE

Tithe

Severity

DUH;'II Sevarly Degraded

Figure A.9 Submitting an incident for a product

View Incident

Through this console, the user can view all historical tickets, as shown in Figure
A.10. As the support engineer works on the ticket, the user can view ticket
details and updates on the incident by clicking on the ticket number, as shown in
Figure A.11.

VIEW ALL TICKETS
£
1 Mzl phoesy i wwiiched of Frequently e 100% changed. Sun Do 13 2015
2 Beresn resolulion dma down Ber 50 Daliery is kel Sun Do 13 2015
3 Coniracty ane delettd BUALmATEAly Sum Doz 132005
L] Cail ary sutormatcally dvenied 15 voicn maily. Sun Do 13 2015
Figure A.10 Users view of his active tickets
VIEW TICKETS

ACCOUNT INFORMATION

Ticket Mo - 5 Status open Email Addreis - Bhlack @ mycompasy oom

Acvoant Mo Sea2802 User Mamse @ Bhlack Severity : 1

Pleass Replece the Battery. Ploase by an suthorized baflsny.

Thern it an issut with th Sanding the Tex mesagos.

Figure A.11 Viewing a ticket update

Message Board

This is very basic message board utility. Users can use message board
functionality to get help from the user community. They can post questions and
respond to the questions posted on the message board by other users.

The message board console shown in Figure A.12 will display the entire list of
messages that are currently open.

1 Adiieniatics Farsraal DROBRNIT

| Z Phone swiched 050827

Figure A.12 Message board
Let’s take a look at what we can do in the message board.
New Message

Clicking on the Add button opens a console to start a new message for
discussion, as shown in Figure A.13.

MESSAGE BOARD

Tithe :-

Coahaper Tithe

Commeents
Entir your Commants hor

Comments Date time

Figure A.13 Adding a new message

Existing Thread

By clicking the Message title, as shown in Figure A.14, you can join the existing
discussion and add comments.

Tithe :- Cell Phone Network

Comments

Enter your Comments heng

Figure A.14 Commenting on existing message

Commenls Date time

Make Appointment

This console provides the appointment capability to the users, as shown in
Figure A.15. Availability for the date and time is pulled from the database. The
user can select time zone, date, and time for the appointment with the support
engineer.

Product : Black berry Z10 B
TimeZone : Eastern Time)
Apointment Date: 10022017 B

Apointment Timeslot: | 200PM |

Figure A.15 Scheduling an appointment

Search

Users can search across the application for issues. The application has three
search options, as shown in Figure A.16:

* Basic Search. Performs a database scan for the keywords.

» Wiki Search. Searches all Wiki data for the keyword.

e Advance Search. Uses Solr search, which is a text search and is more
accurate than a basic search.

Advancae Search

fesults for Iphone from WikiPedia
FhangiFhon (afoun’ EYE-fohn) is a line of smartphones designed and marketed by Apple Inc. They run Apple's IOS mobile operating system, The first generation
Phong 335The iPhone 3GS (erginally sthyled iPhone 3G 5) is a smariphone thal was designed and marketed by Apple Inc. It is the thind gencration iPhone, successar

Figure A.16 Searching the application for issues

My Profile

These two tabs show the user profile for the logged-in user. The first tab shows
the personal information, as shown in Figure A.17; the second shows the account
information, as shown in Figure A.18.

R Profile Q@ Account

First Name : Parminder
Last Mame : Kocher
City : Austin
Country : Us

Figure A.17 User profile

('Q. Profile Q Account

Account Start Date : 005/12/12

Account End Date ; 2025112712

Account No : 56789

Account Type : Personal

Figure A.18 Account information

Support Desk Engineer Flows

Support desk engineers work on the incoming tickets and help resolve
customers’ issues. There are two main options: viewing all tickets and viewing
and updating a specific ticket.

View All Tickets

In the support desk engineer console, the engineers can see all the tickets, and
they can click on the ticket number to open the ticket and start working at it, as
shown in Figure A.19.

VIEW ALL TICKETS

=
S S - . RSy S
1 Wbl phowes i swilchaed of Fregquently sfier 100% chasged. Sun Dex 132095
E Beroo ieRoRTon el Gl S S0 DTy B I S Dot 135015
E] + e Oeleted BUAKTELCE Sun Dec 132075
L T4 arg SASTETCATY Cviried X vy mdil S Dot 133015

& Theee is an isses with T Sendng he Ted mesages. Sun Dec 132075

Figure A.19 Support desk user console

View Tickets

Clicking on the ticket number in the support console opens the ticket in the
update mode. A support desk engineer can add comments, change status, and so
on, as shown in Figure A.20.

VIEW TICKETS

ACCOUNT INFORMATION

Tieket Mo :] Stabas open Email Address : proheri mycompany.oom
Account Mo : I 23456TRY User Name ; phocher Severity |

Flease Replace the Batiery. Pleass buy an authorized batlery

Wobile phone is swiched of Freguany afer 100% chasged.

Figure A.20 Viewing and updating a ticket

This wraps up our high-level discussion of the functionality of the application.
Again, the intent was not to write an industry-grade application but to create an
application comprehensive enough for a case study in which you could gain
hands-on experience in transitioning a monolithic application to a microservices-
and containers-based application.

Appendix B
Installing the Solr Search Engine

This appendix provides step-by-step instructions for installing and configuring
Solr to use as our search engine as part of improving the search service part of
our case study in Chapter 12, “Case Study: Migration to Microservices.” The
instructions are applicable to CentOS operating system. If you want to learn
more about Solr and explore its capabilities, visit
http://lucene.apache.org/solr/resources.html.

Prerequisites

* CentOS Linux box or virtual machine with at least 1 GB of RAM
* python-software-properties package installed

 Latest version of Java installed

Installation Steps

1. Download the Solr tar file from the mirror. You can pull the latest version
available, but at time of writing, we worked with version 5.5.

Click here to view code image

wget http://apache.mirrorl.spango.com/lucene/solr/5.5.4/s0lr-5.5.4.tc

We’ll use the wget utility to download the tar file, as shown in Figure B.1.

ANUJSIN-H-T2HS:webapps anujsin$ wget http:f{apache.mirrorl.spango.com/lucene/solr/5.5.4/solr-5.5.4.1gz
--2017-07-25 22:14:54- - http:/fapache.mirrorl.spango.com/lucene/solr/5.5.49/solr-5.5.4.1g92

Resolving apache.mirrorl.spango.com... 83.98.147.65

Connecting to apache.mirrorl.spango.com|83.98.147.65/|:80... connected.

HTTP reguest sent, awaiting response... 200 0K

Length: 136766786 [130M] [application/x-gzip]

Saving to: 'solr-5.5.4.tg2’

su[raE,E,l-l_t_gz]ﬁl:l"ﬁ',[:=========:=========================pI |3|},l-|3|'[| 3Lf-||]ﬂ'|E||f5 in EBE

2017-07-25 22:15:22 [4.67 MB/s) - 'solr-5.5.9.tg2" saved [136766786/136766786]
Figure B.1 Downloading solr tar file

http://lucene.apache.org/solr/resources.html
http://apache.mirror1.spango.com/lucene/solr/5.5.4/solr-5.5.4.tgz

2. Unzip the downloaded tar file:

tar xzf solr-5.5.4.tgz

3. Execute the install script:
Click here to view code image

solr-5.5.4/bin/install solr service.sh

It may take a minute or so to install. Once it is installed, you can visit
http://your_server_ip:8983/solr. The Solr web interface should look like Figure
B.2.

Use original Ul (i)
S I- J{% = Instance = System]
O r = Srart 3 months ago Physical Memory

& Dashboard

= Versions
in
=3 Logging B solr-spec5.5.0
i Core Admin solr-impl 6.5.0 4b16¢9al0cIcb0calaf 1fcI2ecI276aTbCTHECYS - Swap Space
Java Properties o lucene-sphes.0
Thoead Dump lucene-imls.0 4b16c9al0c3c00calal 1fc92ec3276aTbe TbBCIS -

File Descriptor Count

L VM = VM-Memory

| Runtime Oracle Corporation OpenjDK 64-Bit Server VM 1.8.0_1:

B rrocessors -
= Args =DSTOP.KEY wsolrrocks 89367 M2
DSTOP.PORT = 7953 -
-Djetty. homes fopt/solr-6.5.0/ server
Jjetr M=RO83

=Dlog4].configuration=Ffile: fvarfsolr/logd).properties

=Dsalr Jog.dir=fvarfsolr flogs

Figure B.2 Solr web interface

There will be a separate microservice for the Solr-based search, but we will
pull the data from the existing database to be indexed in Solr. There are different
utilities available to pull the data from MySQL/PostgreSQL into Solr. (You may
also need continuous syncing of the data between the application database and
Solr; in this case, you would pull the data only once to keep it simple.) We will
use a simple data import handler and import the required table in Solr.

http://your_server_ip:8983/solr

Configuring Solr for Simple Data Import

1. Add the following configuration in solrconfig.xml. This code specifies the
path to the data import configuration file. This configuration file is installed

as part of Solr. Update the path in this snippet to the location of the file on
your machine:

Click here to view code image

<requestHandler name="/dataimport"

class="org.apache.solr.handler.dataimport.DataImportHandler">
<lst name="defaults">

<str name="config">/path/to/my/dbconfigfile.xml</str>
</lst>
</requestHandler>

2. Add the following in the dbconfig file. We are importing the database table
to be indexed in Solr. In this snippet, we are specifying the data source along
with the data selection query.

Click here to view code image

<dataConfig>
<dataSource driver="org.hsgldb.jdbcDriver"
url="jdbc:hsgldb:./example-DIH/hsgldb/ex"
user="sa" password="secret"/>
<document>

<entity name="products" query="select * from products "
deltaQuery="select id from products
where updated date >
'${dataimporter.last index time}'">
/>
<document>
<dataConfig>

3. Go back to the shell prompt and run following command to import and
index the data:

bin/solr -e dih

Once all the data is indexed in Solr, it is easy to create a RESTful web service
that can query the data from Solr and provide fast, accurate, reliable searches.

We are ready to go! Now you can create the microservice from the case study
described in Chapter 12.

Index

A

account management, helpdesk application case study, 175
addAccount service, 176-177
deleteAccount service, 178
getAccount service, 176
updateAccount service, 177
addAccount service, helpdesk application case study, 176-177
addCatalog service, helpdesk application case study, 182—183
administration, helpdesk application case study, 247, 248-261
Alertmanager and Prometheus, 165-167
Amazon Web Services
DC/OS cluster setup, 227-235
service discovery, 138
Apache Mesos + Marathon, container orchestration, 129
agents, 130-131
frameworks, 131-132
Mesos master, 130
API (Application Programming Interface)
gateways
creating microservices, 40
discovery services and microservice communication, 27
online resources, 149
REST API, 149
servers, Kubernetes and container orchestration, 124—125
appointments, helpdesk application case study, 184-185
getAvailableDates service, 185—186
getAvailableTimeSlots service, 185
saveAppointment service, 186
asynchronous communication, microservices, 23-24
authentication, helpdesk application case study, 173-174, 248-249

authorization, helpdesk application case study, 175
automation, microservices, 38, 39
awslog logging driver, 145

B

backups/recovery, VM, 51
backward compatibility, microservices, 25
binaries, containerizing microservices, 222
bridges
custom bridge networks, 117-118
Docker containers, networking, 113-116
Linux networking, 106
bug fixes, helpdesk application case study, 200-202, 217-219
building
binaries, containerizing microservices, 222
microservices, 18, 19, 212-213
WAR files, containerizing microservices, 222

C

cAdvisor monitoring, 149—-150, 155-156
calculator applications, microservices versus monolithic applications, 4-5
case studies, helpdesk application, 171, 173

account management, 175-178

administration, 247, 248-261

appointments, 184—-186

architecture of, 172-173

authentication, 173—-174, 248-249

authorization, 175

bug fixes, 200—202

building application, 193-197

configuring, 198-200

customers, 247-248

deploying, 198-200

Eclipse IDE, 190-193

flow of, 247-261

Interceptor, 174

message board, 186—189
migrating to microservices, 203-219
overview of, 171-172
product catalog, 181-184
requirements, 200-202
searches, 189
support, 251
ticketing, 178—181
troubleshooting, 200-202
user roles, 248-251
changing logging drivers, 146—-147
circuit breakers, creating microservices, 40
cluster—wide monitoring
Heapster, 150-151
Prometheus, 151-152
adding targets, 156
Alertmanager and, 165-167
cAdvisor and, 155-156
Grafana user interface and, 157-160
Node Exporter and, 155-156
online resources, 167
running, 152-155
viewing stats, 160—165
commands (Docker)
docker attach command, 85-86
docker commit command, 94-95
docker cp command, 91-92
docker create command, 94
docker diff command, 95
docker exec command, 89
docker images command, 7677
docker inspect command, 87—89
docker logs command, 80-83
docker pause command, 92-93
docker ps command, 7980, 85
docker pull command, 75-76

docker remove command, 8687
docker rename command, 90-91
docker restart command, 85
docker rmi command, 77
docker run command, 77-79
docker search command, 73-75
docker stats command, 147-149
communication, microservices, 15
asynchronous communication, 23-24
discovery services, 26-27, 28-29
API gateways, 27
service registries, 27—28
maintaining, 25-26
message buses, 37
migrating to microservices, 37
publish/subscribe method, 24
synchronous communication, 23
web services
maintaining, 25-26
writing, 24-25
compatibility (backward), microservices, 25
complexity of microservices, 11
Compose (Docker), 55, 101-103
configuring
Eclipse IDE, helpdesk application case study, 190-193
Grafana user interface, 159-160
helpdesk application case study, 198-200, 213-217
microservices, 17, 213-217
containers
architecture of, 52-53
defined, 52-53
Docker containers, 56
architecture of, 54-57
attaching to running containers, 85-86
bridges, 113-116
cAdvisor monitoring, 149-150

copying files from containers and local machines, 91-92
creating, 94

creating images from container changes, 94-95
custom bridge networks, 117-118
default connection options, 110
deploying, 57-60

efficiency, 57

example of, 57-60

Heapster monitoring, 150-151

host networking option, 111-113
linking, 106-109

listing changed files/directories in, 95
listing running containers, 79-80
logging, 144-147

LXC versus Docker containers, 53-54
metrics collection, 147-149

monitoring, 143-144

monitoring, cAdvisor, 149-150
monitoring, Heapster, 150-151

none (no connection) option, 110-111
orchestration, 123

orchestration, Docker Swarms, 132-136
orchestration, Kubernetes, 123—-129
orchestration, Mesos + Marathon, 129-132
overlay network drivers, 119-120
pausing processes in, 92-93

port mapping, 118-119

portability, 54, 56

processes, running, 53

Prometheus monitoring, 151-167
removing, 86—87

renaming, 90-91

REST API, 149

restarting, 85

running commands in, 89

storage, 53

viewing container information, 87-89
viewing log files, 80-83
helpdesk application case study, containerizing microservices, 221-246
LXC, 52-53
Docker containers versus LXC, 53-54
portability, 54
microservices, containerizing, 221
accessing microservices, 245—-246
building binaries, 222
building WAR files, 222
creating Docker images, 222227
DC/OS cluster setup, 227-235
deploying microservices, 235-242
inspecting microservices, 239-245
listing dependencies, 222
scaling microservices, 239-245
submitting tasks to Marathon, 236242
continuous delivery, microservices, 9
controller manager (replication controller), Kubernetes and container
orchestration, 126-127
converting microservices, helpdesk application case study, 206—207
copying files from Docker containers and local machines, 91-92
cost of switching to microservices, 18-22
createMessage service, helpdesk application case study, 188—189
createTicket service, helpdesk application case study, 179
cultural change, switching to microservices, 14—15
custom networks
custom bridge networks, 117-118
overlay network drivers, 119-120
underlay network drivers (Macvlan), 121-122
customers, helpdesk application case study, 247—-248

D

daemons/servers, Docker servers/daemons, 54
data migration, microservices migration, 44
data recovery/backups, VM, 51

data segregation, microservices, 10
database-based searches, 211-212
DC/OS (Datacenter Operating Systems), cluster setup, 227-235
decentralization of data, microservices, 10
deleteAccount service, helpdesk application case study, 178
deleteCatalog service, helpdesk application case study, 184
deploying
Docker containers, 57—-60
helpdesk application case study, 198-200, 213-217
microservices, 39, 43, 205, 213-217, 235
VM, 57-58
DevOps, 20-22
defined, 247-248
microservices and, 248-250
directories, listing changed files/directories in Docker containers, 95
discovery process, microservices, 15
discovery services, microservice communication, 26-27, 28-29
API gateways, 27
service registries, 27—28
Docker
clients, 54
containers, 56
architecture of, 54-57
attaching to running containers, 85-86
bridges, 113-116
cAdvisor monitoring, 149-150
copying files from containers and local machines, 91-92
creating, 94
creating images from container changes, 94-95
custom bridge networks, 117-118
default connection options, 110
deploying, 57-60
efficiency, 57
example of, 57-60
Heapster monitoring, 150-151
host networking option, 111-113

linking, 106-109
listing changed files/directories in, 95
listing running containers, 79-80
logging, 144-147
LXC versus Docker containers, 53-54
metrics collection, 147-149
monitoring, 143-144
monitoring, cAdvisor, 149-150
monitoring, Heapster, 150—-151
none (no connection) option, 110-111
orchestration, 123
orchestration, Docker Swarms, 132—-136
orchestration, Kubernetes, 123-129
orchestration, Mesos + Marathon, 129-132
overlay network drivers, 119-120
pausing processes in, 92-93
port mapping, 118-119
portability, 54, 56
processes, running, 53
Prometheus monitoring, 151-167
removing, 86—87
renaming, 90-91
REST API, 149
restarting, 85
running commands in, 89
storage, 53
viewing container information, 87—-89
viewing log files, 80-83
custom networks
custom bridge networks, 117-118
overlay network drivers, 119-120
underlay network drivers (Macvlan), 121-122
defined, 49
docker attach command, 85-86
docker commit command, 94-95
Docker Compose, 55, 101-103

docker cp command, 91-92
docker create command, 94
docker diff command, 95
docker exec command, 89
docker images command, 7677
docker inspect command, 87—89
docker logs command, 80-83
Docker Machines, 55
docker pause command, 92-93
docker ps command, 7980, 85
docker pull command, 75-76
docker remove command, 8687
docker rename command, 90-91
docker restart command, 85
docker rmi command, 77
docker run command, 77-79
docker search command, 73-75
docker stats command, 147-149
Docker Swarms, 55, 120-121, 132

nodes, 132

services, 133, 135

Swarm clusters, 133-136

tasks, 133
Dockerfiles, 55

commands, 96

creating, 96-100

format of, 95

instructions for, 96

MySQL Dockerfiles, 96—-100
evolution of, 75
images, 54

creating, 222-227

reusability, 57
installing

Mac OS X installations, 61-65

Ubuntu Linux installations, 68—72

Windows installations, 66—68
online resources, 60
registries, 55
releases, changes between, 75
servers/daemons, 54
VM advantages, 56-57
docker0. See bridges

E

e-commerce systems, microservices versus monolithic applications, 6—8
Eclipse IDE
helpdesk application case study, 190-193, 213
microservices, building, 213
efficiency
Docker containers, 57
VM, 51, 52
Ethernet devices (virtual), Linux networking, 106
examples, Docker containers, 57—60

F

failsafe design
microservices, implementing, 38
web services, 25
failure handling, microservices, 17
fault handling, helpdesk application case study, 219
fault isolation, microservices, 10
files
copying from containers and local machines, 91-92
listing changed files/directories in Docker containers, 95
flexibility, VM, 51

G

gcplogs logging driver, 145

GELF logging driver, 146

getAccount service, helpdesk application case study, 176
getAllMessage service, helpdesk application case study, 187-188

getAvailableDates service, helpdesk application case study, 185-186
getAvailableTimeSlots service, helpdesk application case study, 185
getCatalog service, helpdesk application case study, 182
getMessage service, helpdesk application case study, 187
Google, Kubernetes and container orchestration, 123—124

kubectl command-line interface, 124

master node, 124127
Grafana user interface

configuring, 159-160

Prometheus and, 157-160

H

Heapster monitoring, 150-151
helpdesk application case study, 171, 173

account management, 175
addAccount service, 176-177
deleteAccount service, 178
getAccount service, 176
updateAccount service, 177

administration, 247, 248-261

appointments, 184—-185
getAvailableDates service, 185—186
getAvailableTimeSlots service, 185
saveAppointment service, 186

architecture of, 172-173

authentication, 173—-174, 248-249

authorization, 175

bug fixes, 200—202

building application, 190-197

configuring, 198-200

containerizing microservices, 221
accessing microservices, 245—-246
building binaries, 222
building WAR files, 222
creating Docker images, 222227
DC/OS cluster setup, 227-235

deploying microservices, 235-242
inspecting microservices, 239-245
listing dependencies, 222
scaling microservices, 239-245
submitting tasks to Marathon, 236242

customers, 247-248

deploying, 198-200

flow of, 247-261

Interceptor, 174

message board, 186-187
createMessage service, 188—189
getAllMessage service, 187—188
getMessage service, 187

migrating to microservices, 203
bug fixes, 217-219
building microservices, 212-213
configuring microservices, 213-217
deploying microservices, 205, 213-217
fault handling, 219
helper services, 205
microservice conversion process, 206-207
planning migrations, 203-204
product catalog, 208-211
requirements, 217-219
scalability, 205, 219
searches, 211-212
storage alternatives/polyglot persistence, 205
technology alternatives/polyglot programming, 205
ticketing, 211
troubleshooting, 217-219

overview of, 171-172

product catalog, 181
addCatalog service, 182—-183
deleteCatalog service, 184
getCatalog service, 182
updateCatalog service, 183

requirements, 200-202
searches, 189
support, 251
ticketing, 178-179
createTicket service, 179
viewAllTicket service, 180-181
viewTicket service, 180
troubleshooting, 200-202
updating, 246
user roles, 248-251
helper microservices, 5-6
helper services, migrating to microservices, 43, 205
host networking option, Docker containers, 111-113
hybrid approach, microservice creation, 45

I

images
Docker images, 54
creating, 222-227
reusability, 57
MySQL images
reating from container changes, 94-95
listing available images, 76—77
removing from local machines, 77
running, 77-79
searching for, 73-75
implementing microservices, 38
environment security/automation, 38
failsafe design, 38
independency, 38
reusability, 38-39
source control, 38
tagging, 39
installing
Docker
Mac OS X installations, 61-65

Ubuntu Linux installations, 68—72
Windows installations, 66—68
Solr search engine, 247-266
Interceptor, helpdesk application case study, 174
Internet resources
API, 149
Docker, 60
Kubernetes, 129
Prometheus, 167
interprocess communication. See communication, microservices
iptables, 106

J

Journald logging driver, 145
json-file logging driver, 145, 146

K

Kubernetes, container orchestration, 123-124
kubectl command-line interface, 124
kubelet, 127
Kubernetes Services, 128
master node, 124
API servers, 124-125
replication controller (controller manager), 126—127
scheduler, 125-126

online resources, 129

pods, 127-129

worker nodes, 127

L

latency, microservices, 11
learning curve, switching to microservices, 1517
life span of software in monolithic applications, 18
linking, Docker containers, 106—109
Linux

bridges, 106

Docker installations, 68—72
iptables, 106
namespaces, 105-106
networking, 105
bridges, 106
iptables, 106
namespaces, 105-106
virtual Ethernet devices, 106
virtual Ethernet devices, 106
listing
available MySQL images, 7677
changed files/directories in Docker containers, 95
dependencies, containerizing microservices, 222
running Docker containers, 79-80
log files, viewing Docker containers, 80—83
logging
awslog logging driver, 145
changing drivers, 146—-147
Docker containers, 144—147
gcplogs logging driver, 145
GELF logging driver, 146
Journald logging driver, 145
json-file logging driver, 145, 146
Splunk logging driver, 145
Syslog logging driver, 145
LXC (Linux containers), 52—53
Docker containers versus LXC, 53-54
portability, 54
processes, running, 53

M

Mac OS X, Docker installations, 61-65
Macvlan (underlay network drivers), 121-122
maintaining microservices, 18, 19, 25-26
managing
accounts, helpdesk application case study, 175-178

Docker containers
logging, 144-147
monitoring containers, 143—144
microservices, 16
Marathon. See Mesos + Marathon, container orchestration
marketing microservices, 19, 20-22
Mesos + Marathon
container orchestration, 129
agents, 130-131
frameworks, 131-132
Mesos master, 130
submitting tasks to Marathon, 236242
message board, helpdesk application case study, 186187
createMessage service, 188—189
getAllMessage service, 187—188
getMessage service, 187
message buses, microservice communication, 37
metrics collection and containers, 147—149
microservices
accessing, 245-246
advantages of, 9—11
automation, 38, 39
backward compatibility, 25
building, 18, 19, 212-213
communication, 15
API gateways, 27
asynchronous communication, 23-24
creating microservices, 37
discovery services, 26—29
maintaining, 25-26
message buses, 37
publish/subscribe method, 24
service registries, 27—28
synchronous communication, 23
web services, 24-25
writing web services, 25-26

complexity of, 11
configuring, 17, 213-217
containerizing, 221, 222
continuous delivery, 9
creating
API gateways, 40
circuit breakers, 40
communication, 37
deployment phase, 39
hybrid approach, 45
implementation phase, 3839
monitoring, 40
operational support, 40
organizational readiness, 36
scalability, 40
services-based approach, 36-37
technology selection, 37-38
data segregation, 10
decentralization of data, 10
defined, 3—4
defining for functions, 44
deploying, 39, 43, 205, 213-217, 235
DevOps and, 20-22, 248-250
disadvantages of, 11
discovery process, 15
e-commerce systems, 6—8
failure handling, 17
fault handling, 219
fault isolation, 10
helper microservices, 5-6
implementing, 38
environment security/automation, 38
failsafe design, 38
independency, 38
reusability, 38-39
source control, 38

tagging, 39
inspecting, 239-245
latency, 11
maintaining, 18, 19
managing, 16
marketing, 19, 20-22
migrating to, 40—42
bug fixes, 217-219
building microservices, 212-213
configuring microservices, 213-217
data migration, 44
defining for functions, 44
deploying microservices, 43, 205, 213-217
fault handling, 219
helpdesk application case study, 203-219
helper services, 43, 205
independent builds/deployments, 45
microservice conversion process, 206-207
modification requests, 43
monolithic code, 44
need for migration, 33-35
performance, 42
planning migrations, 203-204
polyglot programming/technology alternatives, 205
product catalog, 208-211
rearchitecting services, 44-45
refactoring code, 44
removing old code, 45
requirements, 217-219
scalability, 42, 205, 219
searches, 211-212
storage alternatives/polyglot persistence, 43, 205
technology alternatives/polyglot programming, 42—43
ticketing, 211
troubleshooting, 217-219
versioning microservices, 44, 45

modularity, 8-9
monitoring, 17, 25-26, 40
monolithic applications versus, 4-5, 6-8, 9-11
performance, migrating to microservices, 42
scalability, 5, 9-10, 16, 19, 20-21, 37, 40, 42, 239-245
security, 16, 37, 37, 38
service discovery, 139
standalone microservices, 15
switching to
business case for switching, 17-18, 22
cost of, 18-22
cultural change, 14-15
learning curve, 15-17
monolithic application attributes, 14
monolithic application fatigues, 14
operational processes, 15
testing, 16
troubleshooting, 11, 217-219
updating, 5, 18, 20
upgrading, 16
version control, 11
versioning, 44, 45
migrating
data, microservices migration, 44
to microservices, 40—42
bug fixes, 217-219
building microservices, 212-213
configuring microservices, 213-217
data migration, 44
defining for functions, 44
deploying microservices, 43, 205, 213-217
fault handling, 219
helpdesk application case study, 203-204, 205, 206-207, 208-219
helper services, 43, 205
independent builds/deployments, 45
microservice conversion process, 206-207

modification requests, 43
monolithic code, 44
need for migration, 33-35
performance, 42
planning migrations, 203-204
product catalog, 208-211
rearchitecting services, 44-45
refactoring code, 44
removing old code, 45
requirements, 217-219
scalability, 42, 205, 219
searches, 211-212
storage alternatives/polyglot persistence, 43
technology alternatives/polyglot programming, 42—43
ticketing, 211
versioning microservices, 44, 45
VM, 51
modification requests, migrating to microservices, 43
modularity of microservices, 8-9
monitoring
cAdvisor, 149-150, 155-156
Docker containers, 143—144
Heapster, 150-151
microservices, 17, 25-26, 40
Prometheus, 151-152
adding targets, 156
Alertmanager and, 165-167
cAdvisor and, 155-156
Grafana user interface and, 157-160
Node Exporter and, 155-156
online resources, 167
running, 152-155
viewing stats, 160—165
monolithic applications
complexity of, 9
e-commerce systems, 6—8

fatigues, 14
helpdesk application case study, 171, 173
account management, 175-178
appointments, 184—-186
architecture of, 172-173
authentication, 173-174
authorization, 175
bug fixes, 200—202
building application, 193-197
configuring, 198-200
configuring Eclipse IDE, 190-193
deploying, 198-200
Interceptor, 174
message board, 186—189
overview of, 171-172
product catalog, 181-184
requirements, 200-202
searches, 189
ticketing, 178-181
troubleshooting, 200-202
microservices, migrating to, 40—42
data migration, 44
defining for functions, 44
deploying microservices, 43
helper services, 43
independent builds/deployments, 45
modification requests, 43
monolithic code, 44
need for migration, 33-35
performance, 42
rearchitecting services, 44-45
refactoring code, 44
removing old code, 45
scalability, 42
storage alternatives/polyglot persistence, 43
technology alternatives/polyglot programming, 42—43

versioning microservices, 44, 45
microservices, switching to
attributes, 14
business case for switching, 17-18, 22
cost of, 18-22
cultural change, 14-15
fatigues, 14
learning curve, 15-17
operational processes, 15
microservices versus, 4-5, 6-8, 9-11
software, life span in monolithic applications, 18
monolithic code, microservices migration, 44
MySQL
Dockerfiles, 96—-100
images
creating from container changes, 94-95
listing available images, 76—77
removing from local machines, 77
running, 77-79
searching for, 73-75

N

namespaces (Linux), 105-106
naming, Docker containers, 90-91
networking (Linux), 105
bridges, 106
custom bridge networks, 117-118
Docker containers
bridges, 113-116
default connection options, 110
linking, 106-109
none (no connection) option, 110-111
iptables, 106
namespaces, 105-106
overlay network drivers, 119-120
port mapping, 118-119

underlay network drivers (Macvlan), 121-122
virtual Ethernet devices, 106
Node Exporter and Prometheus, 155-156

O

old code (migrating to microservices), removing, 45
online resources

API, 149

Docker, 60

Kubernetes, 129

Prometheus, 167
operational complexity of microservices, 11
operational processes, switching to microservices, 15
OS freedom and VM, 51
overlay network drivers, 119-120

P

pausing processes in Docker containers, 92—93
performance
microservices, migrating to, 42
VM, 51, 52
planning microservice migrations, helpdesk application case study, 203-204
pods, Kubernetes and container orchestration, 127-129
polyglot persistence/storage alternatives, migrating to microservices, 43, 205
polyglot programming/technology alternatives, migrating to microservices,
42-43, 205
port mapping, 118-119
portability
Docker containers, 56
LXC versus Docker containers, 54
VM, 51-52
processes (LXC versus Docker containers), running, 53
product catalog, helpdesk application case study, 181
addCatalog service, 182—-183
deleteCatalog service, 184
getCatalog service, 182

migrating to microservices, 208-211

updateCatalog service, 183
Prometheus monitoring, 151-152

Alertmanager and, 165-167

cAdvisor and, 155-156

Grafana user interface and, 157-160

Node Exporter and, 155-156

online resources, 167

running, 152-155

stats, viewing, 160—165

targets, adding, 156
publish/subscribe method, microservice communication, 24

Q-R
recovery/backups, VM, 51
refactoring code, migrating to microservices, 44
registries (Docker), 55
removing

Docker containers, 86—-87

images from local machines, 77

old code, migrating to microservices, 45
renaming Docker containers, 90-91
replication controller (controller manager), Kubernetes and container

orchestration, 126-127

requirements, helpdesk application case study, 200-202, 217-219
resource utilization, VM, 52
REST API, 149
restarting Docker containers, 85
reusing

code, migrating to microservices, 44

Docker images, 57

microservices, 38—39
running

commands in Docker containers, 89

Docker containers

attaching to running containers, 85-86

listing running containers, 79-80
images, 77-79

S

saveAppointment service, helpdesk application case study, 186
scalability
helpdesk application case study, 219, 239-245
microservices, 5, 9-10, 16, 19, 20-21, 37, 40, 42, 205, 239-245
scheduler, Kubernetes and container orchestration, 125-126
searches
database-based searches, 211-212
docker search command, 73-75
helpdesk application case study, 189, 211-212
MySQL images, 73-75
Solr search engine, 212, 247-266
security, microservices, 16, 37, 37, 38
segregation of data, microservices, 10
servers
API servers, Kubernetes and container orchestration, 124-125
Docker servers/daemons, 54
service registries, discovery services and microservice communication, 27-28
services
Docker Swarms, 133, 135
service discovery, 136—-137
Amazon Web Services, 138
client-side discovery, 137138
microservices, 139
server-side discovery, 138—139
service registry, 139-141
sharing VM, 51
shopping carts (e-commerce systems), microservices versus monolithic
applications, 7-8
SOA-based monolithic applications
e-commerce systems, 6—8
fatigues, 14
microservices, switching to

attributes, 14
business case for switching, 17-18, 22
cost of, 18-22
cultural change, 14-15
fatigues, 14
learning curve, 15-17
operational processes, 15
microservices versus, 4-5, 6-8, 9-11
software, life span in monolithic applications, 18
software
dependencies (containerizing microservices), listing, 222
life span in monolithic applications, 18
Solr search engine, 212, 247-266
Splunk logging driver, 145
standalone microservices, 15
storage
Docker containers, 53
storage alternatives/polyglot persistence, migrating to microservices, 43, 205
subscribe/publish method, microservice communication, 24
support, helpdesk application case study, 251
Swarms (Docker), 55, 120-121, 132
nodes, 132
services, 133, 135
Swarm clusters, 133-136
tasks, 133
synchronous communication, microservices, 23
Syslog logging driver, 145

T

tagging microservices, 39
technology alternatives/polyglot programming, migrating to microservices,
42-43, 205
testing microservices, 16
ticketing, helpdesk application case study, 178-179, 211
createTicket service, 179
viewAllTicket service, 180-181

viewTicket service, 180
transitioning to microservices, 40—42
data migration, 44
defining for functions, 44
deploying microservices, 43
helper services, 43
independent builds/deployments, 45
modification requests, 43
monolithic code, 44
need for migration, 33-35
performance, 42
rearchitecting services, 44-45
refactoring code, 44
removing old code, 45
scalability, 42
storage alternatives/polyglot persistence, 43
technology alternatives/polyglot programming, 42—43
versioning microservices, 44, 45
troubleshooting
helpdesk application case study, 200-202, 217-219
microservices, 11, 217-219

U

Ubuntu Linux, Docker installations, 68—72
underlay network drivers (Macvlan), 121-122
updateAccount service, helpdesk application case study, 177
updateCatalog service, helpdesk application case study, 183
updating

helpdesk application case study, 246

microservices, 5, 18, 20
upgrading microservices, 16
usage examples, Docker containers, 57—60
user roles, helpdesk application case study, 248—-251

\Y

version control, microservices, 11

versioning microservices, 44, 45
viewAllTicket service, helpdesk application case study, 180—181
viewing Docker containers

container information, 87—89

log files, 80—83
viewTicket service, helpdesk application case study, 180
virtual Ethernet devices, Linux networking, 106
VM (Virtual Machines)

advantages of, 50-51

backups/recovery, 51

defined, 50

deploying, 57-58

disadvantages of, 49-52

Docker, VM advantages, 56-57

efficiency, 51, 52

flexibility, 51

migrating, 51

OS freedom, 51

performance, 51, 52

portability, 51-52

resource utilization, 52

sharing, 51

W-X-Y-Z
WAR files, building, containerizing microservices, 222
web resources
API, 149
Docker, 60
Kubernetes, 129
Prometheus, 167
web services
failsafe design, 25
maintaining, 25-26
writing, 24-25
Windows, Docker installations, 66—68
WordPress sites, Docker containers deployment example, 57—60

Credits

Figures 6.1-6.10, 7.1-7.47, 10.4, 10.7, 10.11, 10.15, 10.16, 10.23: Screenshot of
Docker captured © 2018 Docker Inc. All rights reserved.

Figures 6.11, 11.2, 13.5-13.14: Screenshot of Microsoft captured © Microsoft
2018

Figures 6.13-6.16: Screenshot of Ubuntu © 2018 Canonical Ltd. Ubuntu and
Canonical are registered trademarks of Canonical Ltd.

Figures 8.18, 11.6-11.8, 12.4, B.2: Screenshot from Copyright © 2017 The
Apache Software Foundation, Licensed under the Apache License, Version 2.0

Figures 10.12-10.14, 10.17-10.22: Screenshot of Grafana captured Copyright
2018 © Grafana Labs.

Figures 11.3-11.5, 12.2, 12.3: Screenshot of Eclipse Copyright © 2018 The
Eclipse Foundation.

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InfermiT cart or the Manage
Codes section of your account page.

Download available product updates.

Access bonus material if available.”

+ Check the box to hear from us and receive exclusive offers on new
editions and related products.

‘Registration benefits vary by product. Benefits will be listed on your acount page under
Registered Products,

InformIT.com=The Trusted Technology Learning Source
InfarmiT is the online home of information technology brands at Pearsan, the warld's
foremost education company. At informiT.com, you can
- Shop our books, eBooks, software, and video training
Take advantage of our special offers and promotions {informit comipromotions)
Sign up for special offers and content newsletter (Informit.cominewsletters)
Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

informir
T

AgdoonWasiey - Adela Press - Coco Press « Maoresaft Press - Paarson IT Carvficanion - Prasson Hal < Que = Sams < Paachpi Prass

l@' Pearson

Code Snippets

docker create - name mysgl_data container -v /var/lib/mysql
ubuntu
docker run --volumes-from mysgl data_contalner -v /var/
lib/mysqgl:/var/lib/mysgl - MYSQL_USER=mysql -e
MYSQL_PASSWORD=mysgl —-e MYSQL_ DATABASE=test -e
MYSQL_ROOT_PASSWORD=test -it -p 3306:3306 -d mysql

docker run -d --name wordpress --link mysqgl:mysgl wordpress

§ sudo apt—-get install %
linux-image—-extra-§ (uname -r)
linux—-image—-extra-virtual

$§ sudo apt-get install %

apt-transport-https \

ca—certificates

curl %\ software-properties—common
$ curl -£fsSL https://download.Docker.com/linux /ubuntu/gpg |
sudo apt-key add

5 sudo apt-key fingerprint OEBFCDES

$ sudo add-apt-repository "deb [arch=amdb4] <-DOCEKER-EE-URL> %
$(lsb_release -c¢s) % stable-"

docker run [options] image: tag [command, args]

docker run ——name myDatabase
> —e MySQL_ROOT_PASSWORD=myPassword
> —d MySQL:latest

docker inspect [Options] Container ID/Image
docker inspect -format='{{.Name}}' £fcb85434597b

docker inspect
> -format="{{.NetworkSettings.IPAddress}}' fcb85434597b

docker exec [Options] Container ID Command [Arg...]
Usage: docker rename Container ID new name

docker rename 510f8e769fc Parminder

docker cp [OPTICNS] CONTAINER:SRC_PATH DEST FPATH
docker cp [OPTIONS] SRC _PATH|- CONTAINER:DEST PATH
docker cp Parminder: /var/sample.txt
docker cp MyFile.txt Parminder: /var
docker pause CONTAINER [CONTAINER...]
docker unpause CONTAINER [CONTAINER...]
docker create [OPTIONS] IMAGE [COMMAND] [ARG...]
docker commit{Options] Container [Repository:Tagl

ARG OS5_VERSION=14.04
FROM Ubuntu:${0S_VERSION}

From ubuntu:14.04

Maintainer pkocher@domain.com

Eun apt -get update

Fun apt -get -y install MySQL-server

EXPOSE 3306

CMD ["/usr/bin/MySQLd_safe"]

docker run -d -p 3306:3306 pkocher /MySQL

Command: mysql
show databases;

connect information_schema

show tables

version: "2°

services:

tomcat:
image: 'tomcat:7'
container name: appserver
ports:
— wversion: '2°'
depe services:
— db
db:
image: 'mysgl:5.7'
container name: dbserver
ports:
— "3306:2306"
environment :
MYSQL_ROOT_ PASSWORD=sample
MYSQL_ DATABASE=helpdesk
MYSQL USER=helpdesk
MYSQL_ PASSWORD=helpdesk

docker run -d —— name tomcatContainer tomcat

docker run ——link tomcatContainer:tomcat ——mame sglcontainer
> —e MYSQL_ROOT_ PASSWORD=password —-d mysqgl

docker exec -it sglcontainer /bin/bash
docker inspect TomcatContainer | grep IP
docker run -it ——network=none tomcat /bin/bash
docker inspect 43cl0£fe289b3| grep IP

docker ps

docker exec -it kickass_minsky /bin/bash

docker run -d --network=bridge mysqgql

docker run -d --network=default tomecat

docker network create [OPTIONS] NETWORK
docker network create ——driver bridge pkNetwork

docker run -d ——network pkBridge —p 8000:80 ——name tomcatPK -d

tomcat

kubectl run myTomcat —-image=Tomcat —-replicas=3

kubectl run myTomcat —-image=tomcat —-replicas=2

"id": "catalog-svec",
"cpus": 0.5,
"mem": 8.0,
"instances": 3,
"container": {
"type": "DOCKER",
"Docker™: {
"image": "helpdesk/catalog-svec",
"network": "BRIDGE",
"portMappings": [
{"containerPort": 80, "hostPort": 80, "protocol": "tcp"}
]
h
h
h
curl —X POST http://hostip:port/v2 /apps \
—-d @application.JSON
-H "Content-type: application/JSON"

docker swarm init ——-listen—-addr 10.88.237.217:2377
docker swarm join —token <tokenID:> 10.88.237.217:2377

docker service scale service TomcatService=2

docker service scale TomcatService=1

docker info | grep 'Logging Driver'
docker inspect -f '{{.HostConfig.LogConfig.Type}}' ec5e917eb%bl

"log—driver":

"log-opts":{ options like syslog server info, etec. }
docker run -it —-log-driver none ubuntu:latest sh

docker ps //Copy ContainerID
docker logs 73clb74d6091

docker stats ——format "table {{.Name }} “t {{.ID }} \t {{.CPUPerc}} \t
{{.MemUsage}}"

curl ——unix-socket /var/run/docker.sock -X GET

'http: /v1.24 /containers/<container IDs/stats'

sudo docker run

——~volume=/: /rootfs:ro \
——volume=/var /run: /var/run:rw

——volume=/sys: /sys:ro \
——volume=/var/lib/docker/: /var/lib /docker:ro)
——publish=8080:8080

——detach=true %

——name=cadvisor

google /cadvisor:latest

version: '2'

networks:
- pk_network:

driver:bridge

volumes:

prometheus_data: {}

services:

prometheus:

image: prom/prometheus

container name: pk_prometheus

volumes:

- ./prometheus/: /etc/prometheus/

— prometheus_data: /prometheus

command :

- '"—config.file=/etec/prometheus /prometheus.yml'
- '—-storage.local .path=/prometheus'

- '-storage.local .memory—chunks=100000"
restart: unless-stopped

expose:

- 9090

ports:

- 9090:9090

networks:

- pk_network

labels:

org.label-schema.group: "monitoring for PK containers"

global:
scrape_interval: 20s

evaluation interwval: 20s

#Attach the below label for graph view

external_labels: monitor: 'Docker—-pk-monitor'

End points for scrape

— job_name: 'pk_prometheus'
scrape_interval: 25s
static_configs:

- targets: ['localhost:9090']

nodeexporter:

image: prom/node-exporter
container_name: pk_nodeexporter
restart: unless—-stopped

expose:

- 9100

networks:

- pk_network

labels:

org.label-schema.group: "monitoring for PEK containers"

cadvisor:

image: google/cadvisor:v0.26.1
container_name: pk_cadvisor
volumes:

- /:/rootfs:ro

- /var/run: /var/run:rw

- /sys:/sys:ro

- /var/lib/docker/: /var/lib/docker:ro
restart: unless—-stopped
expose:

— 8080

networks:

- pk_network

labels:

org.label-schema.group: "monitoring for PEK containers"

scrape_configs:

— job_name: 'pk_nodeexporter'
scrape_interval: 15s
static_configs:

— targets: ['nodeexporter:9100"']

— job_name: 'pk_cadvisor'
scrape_interval: 20s

static_configs:

- targets: ['cadvisor:8080']
volumes :
prometheus_data: {}
grafana_data: {}
grafana:

image: grafana/grafana
container name: grafana
volumes :

— grafana_data: /var/lib/grafana
env_file:

— user.config

restart: unless-stopped
expose:

- 3000

ports:

- 3000:3000

networks:

- pk_network

labels:

org.label-schema.group: "monitoring for PK containers"

GF_ SECURITY_ADMIN_USER=admin

GF_ SECURITY_ADMIN_PASSWORD=admin

GF_ USERS_ALLOW_SIGN_UP=false

sum(rate (container_cpu_user_seconds_total{image!=""}[1m]l)) /

count (node_cpu{mode="system"})} * 100

alertmanager:

image: prom/alertmanager
container_name: alertmanager_pk
volumes:

- ./alertmanager/: /fetc/alertmanager/
command :

— '"—config.file=/etc/alertmanager /config.yml'
- '"—storage.path=/alertmanager’
restart: unless—stopped

expose:

- 9093

ports:

- 9093:9093

networks:

- pk_network

labels:

org.label-schema.group: "monitoring for PK containers"

prometheus:

image: prom/prometheus

container name: Prometheus_pk

volumes:

- ./prometheus/: /etc/prometheus/

— prometheus_data: /prometheus

command :

— '"—config.file=/etc/prometheus /prometheus.yml'
— '"—storage.local .path=/prometheus'’

— '—alertmanager.url=http://alertmanager:9093"'
- '"—storage.local .memory—chunks=100000"
restart: unless-stopped

expose:

- 9090

ports:

- 9090:9090

networks:

- pk_network

labels:

org.label-schema.group: "monitoring for PK containers"

ALERT tomcat down
IF absent (container memory_usage_bytes{name="tomcat"})

FOR 10s

LABELS { severity = "ecritical" }

ANNOTATIONS {

summary= "tomcat down",

description= "tomcat container is down for more than

10 seconds.™
}
Load and evaluate rules in this file every
'evaluation interval' seconds.
rule files:

— "econtainers.rules"

@0verride

@PoSsST

@Consumes ({ "application/xml", "application/json"})

@Produces ({"application/json"})

@Path (" /fauthenticate /")

public AuthenticationResponse authenticate (
@Context HttpHeaders headers,
AuthenticationRequest request)

//To—do Implementation
h

<interceptors:>
<interceptor:>
<mapping path="/*"/>
<beans:bean>
class="org.spring.controller.AuthenticationInterceptor"
<beans:bean />
</interceptors

</interceptors>

@0verride
public boolean preHandle |
HttpServletRequest request,
HttpServletResponse response,
Object handler) throws Exception {
//To—do Implementation
}
LoginForm userData = (LoginForm)
context.getSession() .getAttribute ("LOGGEDIN_USER") ;

=%

LoginForm loginform= (LoginForm) session.getAttribute
("LOGGEDIN_USER") ;
String user=loginform.getUsername () ;
if (session.getAttribute ("ACCESS_LEVEL") .equals("4"))
&=

@Component

@Path (" /AccountService")
public class AccountServiceImpl implements AccountService {

@0verride

@GET

@Consumes ({ "application/xml", "application/json"})

@Produces ({"application/json"})

@Path (" /getAccount /{customerId}")

public AccountViewResponse getAccount (
@Context HttpHeaders headers,
@PathParam("customerId")String customerId)
throws ServicelnvocationException {

//To do the task and implementation of DAO
h

@0verride
@POST
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" faddAccount /")
public AccountResponse addAccount (
@Context HttpHeaders headers,
AccountRequest req)
throws ServicelnvocationException {
//To do the task and implementation of DAO
h

@0verride
@POST
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" /fupdateAccount /")
public AccountResponse updatelAccount (
@Context HttpHeaders headers,
AccountRequest req)
throws ServicelnvocationException {
//To do the task and implementation of DAO
h

@0verride
@PoSsST
@Consumes ({ "application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" /deletefAccount /")
public AccountResponse deletelAccount |
HttpHeaders headers,
AccountRequest req)
throws ServicelnvocationException f{
//To do the task and implementation of DAO
}
@Component
@Path (" /TicketService")
public class HelpDeskTicketServiceImpl

implements HelpDeskTicketService, ApplicationContextAware {

@0verride

@POST

@Consumes ({ MediaType . APPLICATION_JSON,

MediaType .APPLICATION_XML })

@Produces ({ MediaType . APPLICATION_JSON,

MediaType .APPLICATION_XML })

@Path (" /createTicket /")

public TicketResponse createHdTicket
@Context HttpHeaders headers,
TicketRequest ticketRequest)
throws ServicelnvocationException{

//To do the task and implementation of DAO

}

@0verride
@GET
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" /viewTicket /{userId} /{ticketId}")
public ViewTicketResponse viewTicket |
@Context HttpHeaders headers,
@PathParam("userId")String userld,
@PathParam("ticketId")String ticketId)

throws ServicelnvocationException {

@0verride

@GET

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path (" /viewAllTicket /")

public ViewAllTicketResponse viewAllTicket (
@Context HttpHeaders headers)
throws ServicelnvocationException {

//To do the task and implementation of DAO

h

@Path (" /CatalogService")

public class CatalogServiceImpl implements CatalogService {

@0verride

@GET

@Consumes ({ "application/xml", "application/json"})

@Produces ({"application/json"})

@Path (" /getCatalog/{customerId}")

public ProductDetailsResponse getCatalog/|
@Context HttpHeaders headers,
@PathParam("customerId") String customerId)
throws ServicelnvocationException {

//To do the task and implementation of DAO

h

@0verride
@POST
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" faddCatalog /")
public CatalogResponse addCatalog |
@Context HttpHeaders headers,
CatalogRequest req)
throws ServicelnvocationException {
//To do the task and implementation of DAO
h

@0verride
@POST
@Consumes ({"application/«xml", "application/json"})
@Produces ({"application/json"})
@Path (" fupdateCatalog /")
public CatalogResponse updateCatalog(
HttpHeaders headers,
CatalogRequest req)
throws ServicelnvocationException {
//To do the task and implementation of DAO
h

@0verride
@PoSsST
@Consumes ({ "application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" /deleteCatalog /")
public CatalogResponse deleteCatalog(
HttpHeaders headers,
CatalogRequest req)
throws ServicelnvocationException {
//To do the task and implementation of DAO
h

@Component
@Path (" /AppointmentService")

public class AppointmentServiceImpl {

@0verride

@POST

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path (" /getAvailableTimeSlots /")

public

AppointmentAvailableTimeSlotResponse getAvailableTimeSlots |
@Context HttpHeaders headers,
AppointmentAvailableTimeSlotRequest Request)

//To Do}

@0verride

@PoSsST

@Consumes ({ "application/xml", "application/json"})

@Produces ({"application/json"})

@Path (" /getAvailableDates /")

public

AppointmentAvailableDateResponse getlUnAvailableDates (
@Context HttpHeaders headers,
AppointmentAvailableDateRequest request) |

///to do}

@0verride

@POST

@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})

@Path (" /savelppointment /")

//To Do}

@Component
@Path (" /MessageService")

public class MessageServiceImpl implements MessageService {

@0verride
@GET
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" /getMessage/{title}")
public MessageViewResponse getMessage (
@Context HttpHeaders headers,
@PathParam("title")String title)
throws ServicelnvocationException {
//To do the task and implementation of DAO

@0verride

@GET

@Consumes ({ "application/xml", "application/json"})

@Produces ({"application/json"})

@Path (" /getAllMessage /")

public MessageViewAllResponse getAllMessage |
@Context HttpHeaders headers)
throws ServicelnvocationException f{

//To do the logic

h

@0verride
@PoSsST
@Consumes ({ "application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" /createMessage /")
public RestResponse createMessage |
@Context HttpHeaders headers,
MessageRequest req)
throws ServicelnvocationException {
//To do the logic
}
@Component
@Path (" /Search/Service")

public class SearchServicelImpl implements SearchService {

@0verride
@GET
@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" /search")
public MessageViewResponse search |
@Context HttpHeaders headers,
@PathParam("title")String title)
throws ServicelnvocationException {
//To do the task and implementation of DAO

<B8&H id="DataSource" destroy-method="close"
class="org.apache.tomcat.jdbc.pool.DataSource">
<property name="driverClassName"
value="com.mysql.jdbc.Driver" />
<property name="url"
value="jdbc:mysql: //<dbhost>:<dbports> /<dbname>" />
<property name="username" value="<Usernames>" />
<property name="password" value="<Passwords" />
<property name="initialSize" wvalue="5" />
<property name="maxActive" value="50" />
<property name="validationQuery"
value="select 1 from dual" />
<property name="testWhileIdle" wvalue="true" />
<property name="testOnBorrow" value="true" />
<property name="minIdle" value="020000" /=
<property name="minEvictableIdleTimeMillis"
value="30000000" /=
<property name="timeBetweenEvictionRunsMillis"
value="6000000" />
<property name="removelbandoned" value="true"/>
<property name="removelbandonedTimeout" wvalue="30000" />
<property name="logAbandoned" value="true" />

<property name="maxWait" value="120000" /=

<project name="projects" default="jar" basedir=".">

<property name="src" location="src"/>
<property name="build" location="build" /s>
<property name="dist" location="dist"/>

<property name="jar.location" location="${dist}/lib" />

<dirname property="projects.basedir"
file="${ant.file.projects}" />

<echo>projects.basedir=5{projects.basedir}</echo>

<echo>Inside smartview project:

smartview.basedir=5{smartview.basedir}</echo>

<path id="project.classpath">
<fileset refid="sv.jars" />
<fileset refid="common.dist" />
< /paths

<filelist id="project.build.files" dir=-"§{projects.
basedir}">
<file name="build.xml" />
</filelists>

" dir="S${projects.basedir}">

<fileset id="sv.jars
<include name="src/main/lib/* _.jar" />
</filesets

" dir="S${projects.basedir}">

<fileset id="common.jars
<include name="src/main/lib/*.jar" />

</filesets

<fileset id="common.dist" dir="S${projects.basedir}">
<include name="dist/lib/*.jar" />
</filesets>

<target name="compile.individual" depends="init"s>
<javac includeantruntime="false"
debug="true"
compiler="javacl.6"
srcdir="§{src}" destdir="${build}">
<classpath refid="project.classpath" />
</javacs>

</targets>

<target name="jar.individual" depends="compile.
individual">

<mkdir dir="${jar.location}" />

<mkdir dir="${build}/META-INF"/>

<copy todir="${build} /META-INF">
<fileset dir="$%{src} /main/resource /META-INF"

includes="* .xml" />

< /copy>
<jar jarfile=

"S{jar.location} /org-${ant.project.name}.jar"
basedir="5{build}" />
< /targets

=!—— Methods only used by the top level of JARing or
WARing everything up —-—=
<target name="jar" depends="init">
<mkdir dir="§${dist}/1lib" />
<subant target="jar.individual">
<filelist refid="project.build.files" />
</subants>

</targets

<target name="copy.files

" depends="jar">

<copy todir="${stage.war.lib}" flatten="true">
<fileset dir="§{projects.basedir}"
includes="* /dist /1ib/* .jar"
excludes="*test* .jar" />

< /copy>

<copy todir="${stage.war.lib}" flatten="true">
<fileset dir="§{projects.basedir}"

includes="common /configproperties/* .xml" />

< /copy>

<copy todir=-"${stage.war.lib}" flatten="true">
<fileset refid="common.jars" />
< /copy>
<copy todir="${stage.war.lib}" flatten="true">
<fileset refid="sv.jars" />
< /copy>
< /targets
" depends="init.war,copy.files">
<war destfile="dist/lib/helpdesk.war"
webxml="src /main /webapp /WEB-INF /web.xml">

<fileset dir="src/main/webapp">

<target name="war

<exclude name="**/.svn" />
</fileset>
<lib dir="src/main /webapp /WEB-INF/1ib" />
<classes dir="5%{build} /classes" />

< /wars

</targets>

public TicketResponse createHdTicket |
@Context HttpHeaders headers,
TicketRequest ticketRequest)

throws ServicelnvocationException{

@Component
private String emailAddress;
@XmlElement
public String getEmailAddress() {
return emaillAddress:
}
public void setEmailAddress (String emailAddress) {
this.emailAddress = emailAddress:

¥

private String saveToDatabase (TicketRequest ticketRequest) {
//added with existing one
ticket.setEmailAddress (ticketRequest.getEmailAddress()) ;

public interface CatalogService extends BeanFactoryAware,
ApplicationContextAware {

public abstract ProductDetailsResponse getCatalog|
@Context HttpHeaders headers,
String userId)

throws ServicelnvocationException;

public abstract CatalogResponse addCatalog |
@Context HttpHeaders headers,
CatalogRequest req)

throws ServicelnvocationException;

public abstract CatalogResponse updateCatalog|
@Context HttpHeaders headers,
CatalogRequest req)

throws ServicelnvocationException;

public abstract CatalogResponse deleteCatalog|
@Context HttpHeaders headers,
CatalogRequest req)

throws ServicelnvocationException;

@Component
@Path (" /CatalogService")

public class CatalogServiceImpl implements
CatalogService {

@0verride

@GET

@Consumes ({"application/xml", "application/json"})

@Produces ({"application/json"})

@Path (" /getCatalog/{customerId}")

publice ProductDetailsResponse getCatalog |

@Context HttpHeaders headers,
@PathParam("customerId") String customerId)

throws ServicelInvocationException {
//To Do Task

¥

public class CatalogServiceHelper {
CatalogDao daoc=null;
//To Do

public class CatalogDaoc extends DataServicel
//To Do
h

<bean id="DataSource" destroy-method="close"

class="org.apache.tomcat.jdbc.pool.DataSource">

<property

<property

<property
<property
<property
<property
<property

<property
<property
<property
<property

<property

<property
<property

<property
<property

< /beans

name="driverClassName"
value="com.mysql.jdbc.Driver" />
name="url"

value="jdbc:mysqgl: //<dbhosts>:
<dbports>/<dbname>" /=

name="username" value="<Username:>"/>
name="password" wvalue="<Password:>"/>
name="initialS5ize" wvalue="5"/>
name="maxActive" value="50"/>
name="validationQuervy"

value="select 1 from dual"/>
name="testWhileldle" value="true"/>
name="testOnBorrow" value="true" />
name="minIdle" value="020000"/>
name="minEvictableIdleTimeMillis"
value="30000000" />
name="timeBetweenEvictionRunsMillis"
value="6000000" />
name="removelbandoned" wvalue="true"/>
name="removelAbandonedTimeout"
value="30000"/>

name="loghbandoned" value="true"/>

name="maxWait" value="120000"/>

@POST

@Consumes ({"application/xml", "application/json"})
@Produces ({"application/json"})
@Path (" /solrSearch")

public QuervResponse search|

@Context HttpHeaders headers,

SearchRequest request)

HttpSolrServer solr = new HttpSolrServer(
"http: //<ip of solr host:
:8983 /solr /helpdesk") ;
SolrQuery query = new SolrQuery () ;
gquery.setQuery (request.getQueryv ()) ;
query.setStart (0) ;

QuervResponse response = solr.query (query) ;

endPoints.serachEndPoint=
http: //host:port /search-svec /rest /SerachService/search
endPoints.getCatalog=
http: //host:port /ticketing-sve/rest /CatalogService/
getCatalog
endPoints._createTicket=
http: //host:port /fcatalog-sve /rest /TicketService/

createTicket

function solrsearch()
{
var solrSearchEndPoint=
<%= props.getProperty(
"endPoints.solrSearchEndPoint") %=':

var searchText=document.getElementById("searchText").
value;

if (searchText=="")
{

alert ("Empty text. Please provide value in text');

var dataToSend= {"query":searchText};
$.ajax ({headers: {
'Accept': "application/json',
'"Content-Type': 'application/json'
| §
url: solrSearchEndPoint,
type: "POST',
dataType: "json',

data: JSON.stringify (dataToSend) .
success: functlon(data, textStatus, jgXHR) {

$("#solrresults") .empty () ;

var docs = data.results;

$.each (doecs, function(i, item) {
$('"#solrresults') .prepend ($('<div>"' +
objToString(item) + "</div>"));

33

var total = 'Found ' + docs.length + ' results';

S5('#solrresults') .prepend('<div>" + total + '</divs>"');

s

}) .fail (function (jgXHR, textStatus, error) {

// Handle error here

alert (jgXHR.responseText) ;

i 3

search-svc catalog—-sve docs helpdesk host-manager
ROOT ticketing—-svec.war search—-svec.war catalog—svc.war
examples

helpdesk.war manager ticketing-svc

public TicketResponse createHdTicket (
@Context HttpHeaders headers,
TicketRequest ticketRequest)

throws ServicelnvocationExceptioni

@Component
private String emailAddress;
@XmlElement
public String getEmailBAddress () {
return emailAddress;
}
public void setEmailAddress (String emailAddress) {
this.emailAddress = emailAddress;

}

private String saveToDatabase (TicketRequest ticketRequest) {
//added with existing one
ticket.setEmailAddress (ticketRequest.getEmailAddress()) ;

#

Based on Ubuntu 17.04

FEOM ubuntu:17.04

#

#
#
#

Environment variables to install Tomcat 7; you may change the
minor version of Tomcat according to your needs. To change the
major version as well (e.g., to Tomcat 8), vou must be sure to
change the TOMCAT_LOCATION variable as well.

ENV TOMCAT VERSION=7.0.81

ENV TOMCAT FILENAME=apache-tomcat-S$TOMCAT VERSION.tar.g=z
ENV TOMCAT DIRECTORY=apache-tomcat-S$TOMCAT VERSION

ENV TOMCAT LOCATION=http://www—eu.apache.org/dist /tomcat/
tomcat-7 /vSTOMCAT VERSION /bin /$TOMCAT_ FILENAME

Fetch Tomcat; install required utilities such as wget & JDE1.8.
Clean up apt cache, as "apt—-get update" is going to bust the
cache

always.

RUN apt—-get update &&

apt—-get install -y wget &&
apt—-get install -y default-jdk && \
rm —fr /var/lib/apt/lists/* && \
wget STOMCAT_LOCATION
Install Tomcat under /opt and rename the directory "tomcat"
RUN tar —xf STOMCAT FILENAME -C /opt && M
mv Jopt/STOMCAT_ DIRECTORY /opt/tomcat

Deploy product catalog service to Tomcat

ADD catalog-svec.war /fopt/tomcat /webapps/

Expose port to the host system
EXPOSE 8080

Run tomcat in the foreground
CMD ["/opt/tomcat /bin/catalina.sh", "run"]

Based on Ubuntu 17.04

FROM ubuntu:17.04

Environment wvariables to install Tomcat 7; you may change the
minor version of Tomcat according to your needs. To change the
major version as well (e.g., to Tomcat 8), yvou must be sure to
change the TOMCAT LOCATION variable as well.

ENV TOMCAT VERSION=7.0.81

ENV TOMCAT_FILENAME=apache-tomcat-$TOMCAT_VERSION.tar.g=

ENV TOMCAT DIRECTORY=apache-tomcat-$TOMCAT VERSION

ENV TOMCAT_ LOCATION=http://www—eu.apache.org/dist /tomcat,/
tomcat-7 /vS$TOMCAT VERSION/bin/$TOMCAT FILENAME

Fetch Tomcat; install required utilities such as wget & JDE1.8.
Clean up apt cache, as "apt-get update" is going to bust the
cache
always.
RUN apt-get update &&

apt—get install -y wget &&

apt—get install -y default-jdk &&

rm —fr /var/lib/apt/lists/* && \

wget STOMCAT LOCATION

Install Tomcat under /fopt and rename the directory "tomcat"
RUN tar —xf STOMCAT FILENAME -C Jopt && \

mv /fopt/STOMCAT DIRECTORY /opt/tomcat
Deploy product catalog service to Tomcat

ADD catalog-svec.war /fopt/tomcat /webapps/

Expose port to the host system
EXPOSE 8080

Run tomcat in the foreground
CMD ["/opt/tomcat /bin/catalina.sh", "run"]

{
"id": "catalog-external",
"container": {
"type": "DOCKER",
"docker": {
"image": "kocher/catalog-sve:1.1",
"network™: "BRIDGE",
"portMappings": |
{ "hostPort": 0, "containerPort": 8080, "servicePort": 10000 }
1.
"forcePullImage":false
I
},
"instances": 1,
"mem": 1024,
"healthChecks": [{

rprotocol ¥ THTTE"
"path": "/",
"portIndex": 0,
"timeoutSeconds": 20,
"gracePeriodSeconds": 10,
"intervalSeconds": 10,
"maxConsecutiveFailures": 10
1.
"labels": {

"HAPROXY GROUP":"external",
"HAPROXY_ 0_VHOST":"ec2-52-207-255-252 .compute-1.amazonaws.com"
}
}

curl http://10.0.0.79:15973 /catalog—sve/rest /CatalogService/
getCatalog/pkocher | python —m JSON.tocol

"productFamilyListList": [
{
"productFamily" : "Phone",
"productId": “iPhone5",
"technologySolution": "N"
},
{
"productFamily": "Phone",
"productId": "iPhonebt",
"technologySolution": "N"
h
1.
"responseErrorCode": null,
"responseErrorMessage": null,
"responseStatus": "SUCCESS"
h

curl http:// dcos—-demo-PublicS1-106EEUPY9510VXE-628629381 .us-
east-1.elb.amazonaws.com:10000/catalog-sve/rest /CatalogService/

getCatalog/<userids>

endPoints.getCatalog=http://ec2-52-207-255-252 .compute-1.

amazonaws.com:10000 /catalog-sve/rest /CatalogService /getCatalog

wget http://apache.mirrorl.spango.com/lucene/solr/5.5.4/
solr-5.5.4.tg=

solr-5.5.4/bin/install_solr_service.sh

<requestHandler name="/dataimport"”
class="org.apache.solr.handler.dataimport.
DatalmportHandler">
<lst name="defaults">
<str name="config" > /path to/my/dbconfigfile.xml</str>
</lst>
</requestHandlers

<dataConfig>
<dataSource driver="org.hsqldb. jdbcDriver"
url="jdbec:hsgldb:. /fexample-DIH /hsqldb /ex"
user="sa" password="secret"/>

zdocument =

<entity name="products" query="select * from products "

deltaQuery="select id from products
where updated_date =
'S{dataimporter.last_index_ time}'">
>
<documents

<dataConfigs>

	Cover Page
	Title Page
	Copyright Page
	Dedication
	Contents
	About This E-Book
	Preface
	Acknowledgments
	About the Author
	Part I: Microservices
	Chapter 1: An Introduction to Microservices
	What Are Microservices?
	Modular Architecture
	Other Advantages of Microservices
	Disadvantages of Microservices

	Chapter 2: Switching to Microservices
	Fatigues and Attributes
	Learning Curve for the Organization
	Business Case for Microservices
	Cost Components

	Chapter 3: Interprocess Communication
	Types of Interactions
	Preparing to Write Web Services
	Microservice Maintenance
	Discovery Service
	API Gateway
	Service Registry

	Putting It All Together

	Chapter 4: Migrating and Implementing Microservices
	The Need for Transition
	Creating a New Application with Microservices
	Organization Readiness
	Services-Based Approach
	Interprocess (Service-to-Service) Communication
	Technology Selection
	Implementation
	Deployment
	Operations

	Migrating a Monolithic Application to Microservices
	Microservices Criteria
	Rearchitecting the Services

	A Hybrid Approach

	Part II: Containers
	Chapter 5: Docker Containers
	Virtual Machines
	Containers
	Docker Architecture and Components
	The Power of Docker: A Simple Example

	Chapter 6: Docker Installation
	Installing Docker on Mac OS X
	Installing Docker on Windows
	Installing Docker on Ubuntu Linux

	Chapter 7: Docker Interface
	Key Docker Commands
	Docker Search
	Docker Pull
	Docker Images
	Docker RMI
	Docker Run
	Docker ps
	Docker Logs
	Docker Restart
	Docker Attach
	Docker Remove
	Docker Inspect
	Docker Exec
	Docker Rename
	Docker Copy
	Docker Pause/Unpause
	Docker Create
	Docker Commit
	Docker Diff

	Dockerfile
	MySQL Dockerfile

	Docker Compose

	Chapter 8: Containers Networking
	Key Linux Concepts
	Linking
	Default Options
	None
	Host
	Bridge

	Custom Networks
	Custom Bridge Network Driver
	Overlay Network Driver
	Underlay Network Driver or Macvlan

	Chapter 9: Container Orchestration
	Kubernetes
	Kubectl
	Master Node
	Worker Nodes
	Example: Kubernetes Cluster

	Apache Mesos and Marathon
	Mesos Master
	Agents
	Frameworks
	Example: Marathon Framework

	Docker Swarm
	Nodes
	Services
	Task
	Example: Swarm Cluster

	Service Discovery
	Service Registry

	Chapter 10: Containers Management
	Monitoring
	Logging
	Metrics Collection
	docker stats
	APIs
	cAdvisor

	Cluster-wide Monitoring Tools
	Heapster
	Prometheus
	Step 1: Running Prometheus
	Step 2: Adding Node Exporter and cAdvisor
	Step 3: Adding Targets
	Step 4: Bringing Up the User Interface: Grafana
	Step 5: Viewing the Stats
	Step 6: Integrating the Alertmanager

	Part III: Hands-On Project—Putting Learning into Practice
	Chapter 11: Case Study: Monolithic Helpdesk Application
	Helpdesk Application Overview
	Application Architecture
	Authentication, Interceptor, and Authorization
	Account Management
	Ticketing
	Product Catalog
	Appointments
	Message Board
	Search

	Building the Application
	Setting Up Eclipse
	Building the Application
	Deploying and Configuring

	New Requirements and Bug Fixes

	Chapter 12: Case Study: Migration to Microservices
	Planning for Migration
	Applying Microservices Criteria
	Conversion Summary
	Impact on Architecture

	Converting to Microservices
	Product Catalog
	Ticketing
	Search

	Application Build and Deployment
	Code Setup
	Building the Microservices
	Deploying and Configuring

	New Requirements and Bug Fixes

	Chapter 13: Case Study: Containerizing a Helpdesk Application
	Containerizing Microservices
	Listing Dependencies
	Build Binaries and WAR files
	Creating a Docker Image
	Building the Docker Image
	DC/OS Cluster Setup on AWS

	Deploying the Catalog Microservice
	Submitting a Task to Marathon
	Inspecting and Scaling the Service
	Accessing the Service

	Updating the Monolithic Application

	Conclusion
	What Is DevOps?
	Only the Beginning

	Appendix A: Helpdesk Application Flow
	Administrator Flows
	Login
	Administration and Supported Products

	Customer Flows
	My Products
	Create an Incident
	View Incident
	Message Board
	Make Appointment
	Search
	My Profile

	Support Desk Engineer Flows
	View All Tickets
	View Tickets

	Appendix B: Installing the Solr Search Engine
	Prerequisites
	Installation Steps
	Configuring Solr for Simple Data Import

	Index

